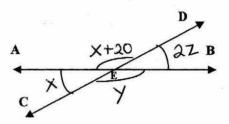
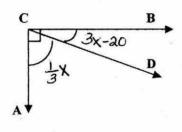
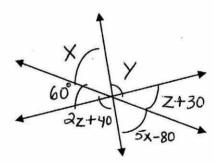

City University of New York New York City College of Technology Mathematics Department

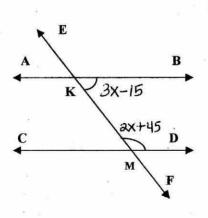
Revised: BRUNO and REAVES Fall 2006

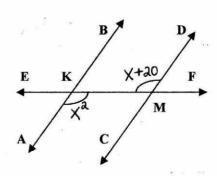

MA 175 GEOMETRY REVIEW

1. Find each marked angle

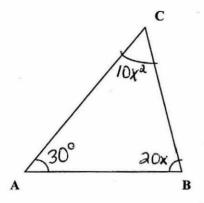

a)


b)

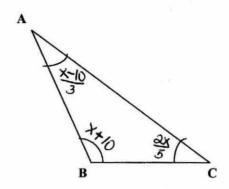

c)


d)

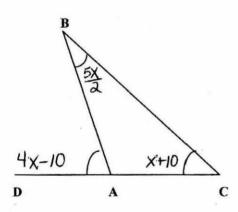
e)

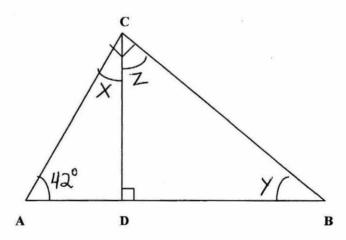


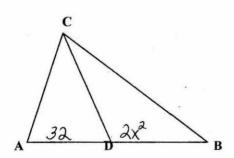
f)

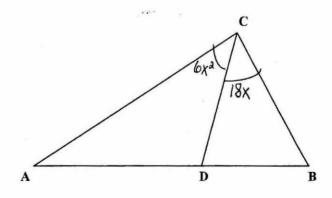


2. Find x and all the missing angles of each triangle

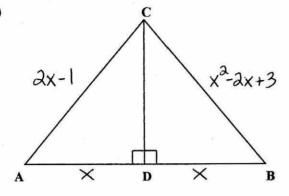

a)

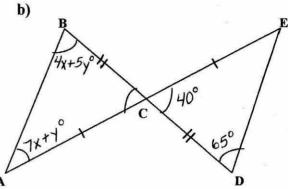

b)


c)

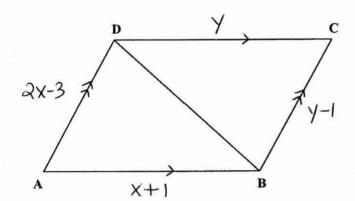

d)

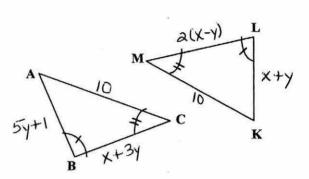
3. Find AB, if CD is a median



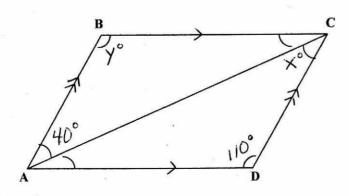

4. Find ∠ACB, if CD is an angle bisector

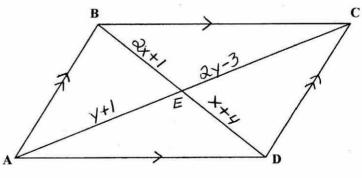
5. Write the congruence statement for each of the following diagrams using the appropriate Theorem. State the corresponding sides and/or angles that are equal. Find x and y.


a)



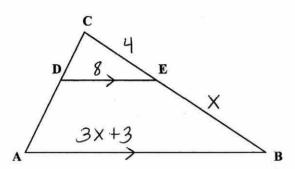
c)

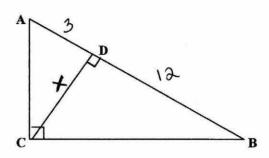




6. Find x and y and all marked sides or angles of the given parallelograms.

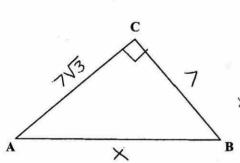
a)



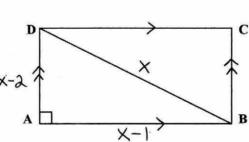


7. For each of the following state the relationship of given triangles. Find x and all marked sides.

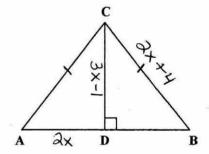
a)

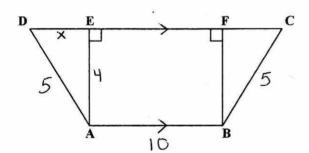


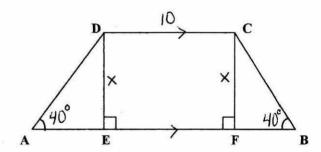
b)



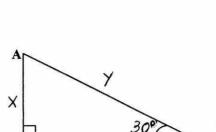
8. For each of the following find x and all marked sides.

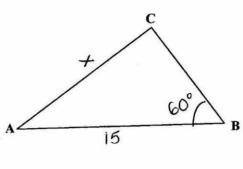

a)


b)

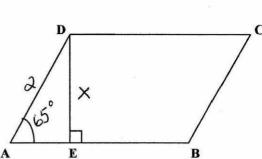


c)


- d) Find x, DC and the area of the figure.
- e) If AB = 20, find x and the area of the figure.

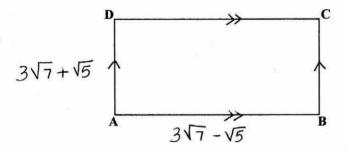

9. For each of the following find x and/or y and the area of the given figures.

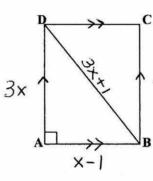
a)



12

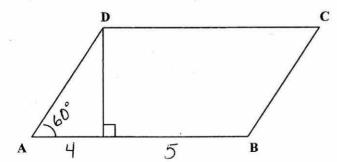
b)

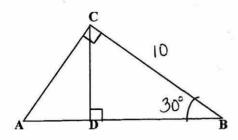

c)

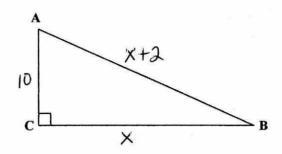


- At a point 100 feet from a tall building the angle of elevation of the top of the building is 65°. Find the height of the building to the nearest foot.
- A 20 foot ladder is leaning against a wall. It makes an angle of 70° with the ground. How high is the top of the ladder from the ground (nearest tenth of the foot).
- For each of the following find the area and perimeter

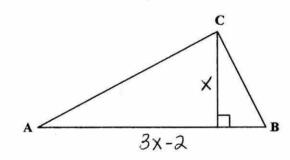
a)

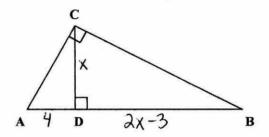

b)

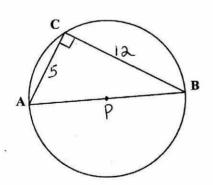


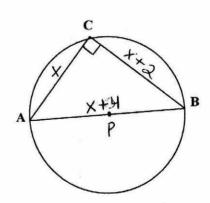

c)

d)




C 10 8


- 13. Find x if the area of $\triangle ABC$ is 48 and AB is 3x-2.
- 14. Find x if the area of \triangle ABC is 39.



15. Find the area and circumference of each circle.

a)

b)

ANSWERS

1. a)
$$x = 10$$
, $\angle ADC = 80^{\circ}$, $\angle CDB = 100^{\circ}$

b)
$$x = 80^{\circ}, y = 100^{\circ}, z = 40^{\circ}, \angle AED = 100^{\circ}, \angle DEB = 80^{\circ}$$

c)
$$x = 33^{\circ}$$
, $\angle ACD = 11^{\circ}$, $\angle DCB = 79^{\circ}$

d)
$$x = 20^{\circ}, y = 100^{\circ}, z = 30^{\circ}$$

e)
$$x = 30^{\circ}, \angle BKF = 75^{\circ}, \angle DME = 105^{\circ}$$

f)
$$x = 5$$
, $\angle AKF = 25^{\circ}$, $\angle DME = 25^{\circ}$

2. a)
$$x = 3$$
, $\angle B = 60^{\circ}$, $\angle C = 90^{\circ}$

b)
$$x = 100$$
, $\angle A = 30^{\circ}$, $\angle B = 110^{\circ}$, $\angle C = 40^{\circ}$

c)
$$x = 40$$
, $\angle DAB = 150^{\circ}$, $\angle B = 100^{\circ}$, $\angle C = 50^{\circ}$

d)
$$x = 48^{\circ}, y = 48^{\circ}, z = 42^{\circ}$$

3.
$$AB = 64$$

b)
$$BC = CD \text{ given}$$

$$\angle BCA = \angle DCE \text{ vertical angles are equal}$$

$$AC = CE \text{ given}$$

$$x = 10, y = 5$$

c)
$$AB = DC$$
 opposite sides of a parallelogram are equal $AD = BC$ opposite sides of a parallelogram are equal $AD = DB$ identity $ADD = DB$ identity

d)
$$\angle B = \angle L \text{ given}$$

$$\angle C = \angle M \text{ given}$$

$$AC = MK \text{ both equal } 10$$

$$x = 5, y = 1$$

$$\Rightarrow \Delta ABC \cong \Delta KLM \text{ (AAS = AAS)}$$

6. a)
$$x = 40^{\circ}, y = 110^{\circ}$$

b)
$$x = 3$$
, $y = 4$, $AE = 5$, $AC = 10$, $BE = 7$, $BD = 14$

$$\angle C = \angle C$$
 identity

7. a)
$$\angle C = \angle C$$
 identity $\angle CDE = \angle CAB$ corresponding angles of parallel lines are equal $\Rightarrow \Delta CDE \sim \Delta CAB$ (AA = AA) $x = 5$, AB = 18

$$\angle B = \angle B \text{ identity}$$

$$\angle ACB = \angle CDB \text{ both equal } 90^{\circ}$$

$$\Delta ACB \sim \Delta CDB \text{ } (AA = AA)$$

$$\Delta A = \angle A \text{ identity}$$

$$\angle ACB = \angle ADC \text{ both equal } 90^{\circ}$$

$$\Delta ACB \sim \Delta ADC \text{ } (AA = AA)$$

$$x = 6$$

8. a)
$$x = 14$$

b)
$$x = 5$$
, $AD = 3$, $AB = 4$, $DB = 5$

c)
$$x = 3$$
, $AD = 6$, $CD = 8$, $CB = 10$

d)
$$x = 3$$
, DC = 16, $A_{ABCD} = 52$ sq. units

e)
$$x \approx 4.195$$
, A_{ABCD} ≈ 62.932 sq. units

9. a)
$$x = 4\sqrt{3}$$
, $y = 8\sqrt{3}$, $A_{AABC} = 24\sqrt{3}$ sq. units

b)
$$x = \frac{15\sqrt{3}}{2}$$
, $y = \frac{15}{2}$, $A_{\Delta ABC} = \frac{225\sqrt{3}}{8}$ sq. units

c)
$$x \approx 1.813$$
, $A_{ABCD} \approx 9.063$ sq. units

12. a)
$$P_{ABCD} = 12\sqrt{7}$$
, $A_{ABCD} = 58$ sq. units

b)
$$P_{ABCD} = 62$$
, $A_{ABCD} = 168$ sq. units

c)
$$P_{ABCD} = 34$$
, $A_{ABCD} = 36\sqrt{3}$ sq. units

d)
$$P_{\Delta ABC} = 36$$
, $A_{\Delta ABC} = 36$ sq. units

e)
$$P_{\Delta ABC} = 10 + 10\sqrt{3}$$
, $A_{\Delta ABC} = \frac{50\sqrt{3}}{3}$ sq. units

f)
$$P_{\triangle ABC} = 60$$
, $A_{\triangle ABC} = 120$ sq. units

13.
$$x = 6$$

14.
$$x = 6$$

15. a)
$$C = 13\pi$$
, $A = 42.25\pi$ sq. units

b)
$$C = 10\pi$$
, $A = 25\pi$ sq. units