

NEW YORK CITY COLLEGE OF TECHNOLOGY
The City University of New York

DEPARTMENT: Mathematics

COURSE: MAT 2540

TITLE: Discrete Structures and Algorithms II

DESCRIPTION: This course continues the discussion
of discrete mathematical structures
and algorithms introduced in MAT
2440. Topics in the second course
include predicate logic, recurrence
relations, graphs, trees, digital logic,
computational complexity and
elementary computability.

TEXT: Discrete Mathematics and its Applications,8th

edition by Kenneth H. Rosen
McGraw-Hill

CREDITS: 3 (2 class hours, 2 lab hours)

PREREQUISITES: MAT 2440

Prepared by Professors Henry Africk, Brad Isaacson, Caner Koca, Nan Li, Satyanand
Singh, Arnavaz Taraporevala, Johann Thiel (Fall 2017)
Revised by Professor Johann Thiel (Fall 2020)

A. Testing Guidelines:
The following exams should be scheduled:

1. A one-hour exam at the end of the First Quarter
2. A one-session exam at the end of the Second Quarter
3. A one-hour exam at the end of the Third Quarter
4. A one-session Final Examination

B. A Computer Algebra System will be used in class and for a project.

Course Learning Outcomes General Education
Learning Outcomes

Flexible Core-
Scientific World

Understand and apply the concept of
mathematical induction.

Acquire strategies and skills to
create and analyze mathematical
proofs using induction.

Be able to use appropriate language
to communicate mathematical ideas.

Evaluate evidence and arguments
critically or analytically.

Produce well-reasoned written or oral
arguments using evidence to support
conclusions.

Identify and solve counting problems. Be able to solve problems using
various counting techniques.

Identify and apply the fundamental
concepts and methods of a discipline
or interdisciplinary field exploring the
scientific world, including, but not
limited to: computer science, logic,
and mathematics.

Produce well-reasoned written or oral
arguments using evidence to support
conclusions.

Compare data structures and algorithms. Be able to understand the limitations
and implications of an algorithm.

Be able to analyze pseudocode to
determine the functionality and
efficiency of an algorithm.

Be able to generate algorithms and
effectively communicate their
purpose.

Gather, interpret, and assess
information from a variety of sources
and points of view.

Demonstrate how tools of science,
mathematics, technology, or formal
analysis can be used to analyze
problems and develop solutions.

Use the master theorem to solve
recurrences that arise from divide-and-
conquer algorithms.

Understand the implications and
consequences of the master theorem
and how it applies to divide-and-
conquer algorithms.

Identify and apply the fundamental
concepts and methods of a discipline
or interdisciplinary field exploring the
scientific world, including, but not
limited to: computer science, logic,
and mathematics.

Produce well-reasoned written or oral
arguments using evidence to support
conclusions.

Study graphs and trees, and solve Acquire a foundation of knowledge Understand the scientific principles
algorithmic problems such as finding of important mathematical concepts underlying matters of policy or public
shortest paths or spanning trees. and definitions.

Be able to see the connections of
graph theory to other disciplines and
real world problems.

Be able to apply various graph-
theoretic algorithms.

concern in which science plays a role.

New York City College of Technology Policy on Academic Integrity

Students and all others who work with information, ideas, texts, images, music, inventions,
and other intellectual property owe their audience and sources accuracy and honesty in
using, crediting, and citing sources. As a community of intellectual and professional
workers, the College recognizes its responsibility for providing instruction in information
literacy and academic integrity, offering models of good practice, and responding vigilantly
and appropriately to infractions of academic integrity. Accordingly, academic dishonesty
is prohibited in The City University of New York and at New York City College of
Technology and is punishable by penalties, including failing grades, suspension, and
expulsion. The complete text of the College policy on Academic Integrity may be found in
the catalog.

Writing Intensive Course Designation

This course has been designated as a “Writing Intensive” (WI) course by City Tech. A WI
course includes critical reading, logical thinking, and the use of writing to help students
understand the topic; the use of appropriate style and disciplinary conventions in writing
and speaking; the use of research resources, including the library, specific to the discipline;
a detailed syllabus; a comprehensive course calendar; and a minimum of fifteen pages of
writing per student. Writing assignments will be both formal (graded) and informal (non-
graded).

Written work will be a mandatory part of the course. This can include coding projects,
proofs, and written assignments. Written work will account for a minimum of 10% of
the overall grade in the course.

5

10

15

20

25

30

MAT 2540 Discrete Structures and Algorithms II Text: Discrete Mathematics and its Applications,8th edition, by Rosen

Lec. Discrete Structures and Algorithms II Homework
1 5.2 Strong Induction and Well-Ordering (354-362) (P. 362) 3-7
2 5.3 Recursive Definitions and Structural Induction (365-368*) (P. 378) 1-9 odd, 20*
3 5.4 Recursive Algorithms (381-391) (P. 391) 1, 3, 5, 7-11, 29-31, 44-48
4 6.3 Permutations and Combinations (428-434) (optional) (P. 435) 1-7, 9, 11, 17, 19, 33

6.1 The Basics of Counting (Skip trees) (405-415) (P. 416) 1-15 odd, 19, 21, 25, 29, 33, 37, 47, 49, 51
6 6.2 The Pigeonhole Principle (420-426) (P. 426) 1, 3, 7, 9, 11, 17, 21
7 Review
8 Test 1
9 8.1 Applications of Recurrence Relations (527-536) (P. 536) 1, 3, 4, 7-9, 11, 13, 21, 26, 27, 28

-11 8.2 Solving Linear Recurrence Relations (540-550) (P. 550) 1, 3, 7, 9, 11, 23-25, 27-30
12-13 8.3 Divide-and-Conquer Algorithms and Recurrence Relations (553-561) (P. 561) 1, 7, 9-17, 21, 36, 37
14 10.1 Graphs and Graph Models (673-682) (P. 682) 3-9, 29-31, 35

10.2 Graph Terminology and Special Types of Graphs (685-699) (P. 699) 1-10, 20, 21-25, 37, 38-45, 61, 63
16 10.3 Representing Graphs and Graph Isomorphism (703-710) (P. 710) 1-23 odd, 30, 31, 34, 35, 39-45 odd
17 Review
18 Test 2
19 10.4 Connectivity (skip counting paths) (714-724) (P. 724) 1-5, 11, 31-34, 50, 54

10.5 Euler and Hamilton Paths (728-739) (P. 739) 1-7 odd, 9, 10, 13-15, 19, 21, 30-36, 37-39, 47
21 10.6 Shortest-Path Problems (743-751) (P. 751) 2-7, 11, 17, 25, 27
22 11.1 Introduction to Trees (781-791) (P. 791) 1-9 odd, 17-20, 27, 28
23 11.2 Application of Trees (793-805) (P. 805) 1-4, 6-8, 11, 19-22, 37
24 11.3 Tree Traversal (808-819) (P. 819) 1, 3, 6, 7-15, 22-24

Review
26 Test 3
27 11.4 Spanning Trees (821-832)

11.5 Minimum Spanning Trees (835-839)
(P. 832) 2-6, 13-18, 27, 28, 30
(P. 839) 1-3, 6, 7

28 5.3 Recursive Definitions and Structural Induction (Recursively Defined
Sets and Functions) (370-377)

(P. 378) 22, 23, 25, 34, 35, 36-38, 45, 46

29 Review
Final Exam

5

10

15

20

25

30

MAT 2540 Discrete Structures and Algorithms II Text: Discrete Mathematics and its Applications,7th edition, by Rosen

Lec. Discrete Structures and Algorithms II Homework
1 5.2 Strong Induction and Well-Ordering (333-341) (P. 341) 3-7
2 5.3 Recursive Definitions and Structural Induction (344-347*) (P. 357) 1-9 odd, 20*
3 5.4 Recursive Algorithms (360-370) (P. 370) 1, 3, 5, 7-11, 29-31, 44-48
4 6.3 Permutations and Combinations (407-413) (optional) ((P. 413) 1-7, 9, 11, 17, 19, 31

6.1 The Basics of Counting (Skip trees) (385-394) (P. 396) 1-15 odd, 19, 21, 25, 29, 33, 37, 45, 47, 49
6 6.2 The Pigeonhole Principle (399-404) (P. 405) 1-9 odd, 15, 19
7 Review
8 Test 1
9 8.1 Applications of Recurrence Relations (501-505) (P. 510) 1, 3, 4, 7-9, 11, 13, 21, 26, 27, 28

-11 8.2 Solving Linear Recurrence Relations (514-524) (P. 524) 1, 3, 7, 9, 11, 23-25, 27-30
12-13 8.3 Divide-and-Conquer Algorithms and Recurrence Relations (527-534) (P. 535) 1, 7, 9-17, 21, 36-37
14 10.1 Graphs and Graph Models (641-649) (P. 649) 3-9, 27-29, 33

10.2 Graph Terminology and Special Types of Graphs (651-665) (P. 665) 1-10, 20, 21-25, 35, 36-43, 59, 61
16 10.3 Representing Graphs and Graph Isomorphism (668-675) (P. 675) 1-23 odd, 26, 27, 30, 31, 35-41 odd
17 Review
18 Test 2
19 10.4 Connectivity (skip counting paths) (678-689) (P. 689) 1-5, 11, 31-34, 50, 54

10.5 Euler and Hamilton Paths (693-703) (P. 703) 1-7 odd, 9, 10, 13-15, 19, 21, 30-36, 37-39, 47
21 10.6 Shortest-Path Problems (707-716) (P. 716) 2-7, 11, 17. 25, 27
22 11.1 Introduction to Trees (745-755) (P. 755) 1-9 odd, 17-20, 27, 28
23 11.2 Application of Trees (757-769) (P. 769) 1-4, 6-8, 11, 19-22, 37
24 11.3 Tree Traversal (772-782) (P. 783) 1, 3, 6, 7-15, 22-24

Review
26 Test 3
27 11.4 Spanning Trees

11.5 Minimum Spanning Trees
(P. 795) 2-6, 13-18, 27, 28, 30
(P. 802) 1-3, 6, 7

28 5.3 Recursive Definitions and Structural Induction (Recursively Defined
Sets and Functions) (349-356)

(P. 358) 22, 23, 25, 32, 33, 34-36, 43, 44

29 Review
Final Exam

(see the next page for a list of suggested projects)

List of Suggested Projects

Lecture 1: Ackermann’s Function (Section 5.3, P. 359, Exercise 48-55)

1. Lecture 2: QuickSort Algorithm (Section 5.4, P. 371, Exercise 49-52)

2. Lecture 9: A variation to the Towers of Hanoi Game (Section 8.1, P. 512, Exercise 32)

3. Lecture 9: The Josephus Problem (Section 8.1, P. 512, Exercise 33-37)

4. Lecture 11: Lucas Numbers (Section 8.2, P. 525, Exercise 11)

5. Lecture 15: Coding Graphs (nodes and edges) in a programming language (e.g. Python, C++, or Java)

6. Lecture 22: Coding Family Trees, and Boolean functions checking relationships between family members

7. Lecture 23: Coding Binary Search Trees (e.g. in Python, C++, or Java)

8. Lecture 28: Coding a recursive algorithm that computes the height of any tree; for example, a binary search

tree.

