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Introduction

Introduction: the E-sail concept
Original concept

The electric solar wind
sail (E-sail) generates
thrust from the
electrostatic interaction
between solar wind ions
and charged tethers
(Janunhen, 2004).
The first E-sail design
consisted of a very large
grid (tens of km) with
thousands of tethers:
huge problems with
deployment and
attitude control.
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Introduction

Introduction: current E-sail designs

Current E-sail designs
Currently, E-sails
composed of one or few
spinning tethers are
considered more realistic.
A multi-asteroid
touring mission with
CubeSats equipped with
single-tether E-sails has
been proposed
(Slavinskis et al., 2018).
Remote unit should host
FEEP thrusters for
attitude control.
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Introduction

Introduction: aim of the work
Motivation of the work

The thrust generated by an E-sail with a limited number of tethers
has a small magnitude.
The thrust direction is constrained to lie within a cone with half-angle
20 degrees centered along the outward radial direction (Huo et al.,
2018).

Aim of the work
This work assumes that a spacecraft is equipped with two propulsive
systems

▶ a small E-sail (thrust ∝ inverse Sun-spacecraft distance);
▶ an electric thruster (such as a FEEP) powered by onboard solar

panels (thrust ∝ power ∝ inverse square Sun-spacecraft distance).
An optimal control problem is formulated to test the effectiveness
of the combination.
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Introduction

Introduction: compatibility of E-sail and electric thruster
Compatibility issues?

Different combinations are
possible:

1 a single small electric thruster
placed in the spacecraft
body;

2 two or more very small
thrusters located in the
remote units.

Option 1 should not generate
interactions between the
thruster and one or few spinning
tethers.
Option 2 has already been
suggested for FEEP-based
attitude control.
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Mathematical model

Mathematical model
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Mathematical model System dynamics

Spacecraft dynamics
Nomenclature
r ≜ Sun-spacecraft distance; θ ≜ polar angle; {u, v} ≜ radial and circumferential velocity components;
m ≜ dimensionless mass aES ≜ E-sail propulsive acceleration; aT ≜ electric thruster propulsive acceleration; r⊕ ≜ 1 au.

2D Dynamical equations
A heliocentric polar frame
T (r, θ) is used

ṙ = u

θ̇ = v

r

u̇ = v2

r
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Mathematical model Thrust models

E-sail thrust model
Nomenclature
ac0 ≜ initial characteristic acceleration; r̂ ≜ radial unit vector; n̂ ≜ unit vector normal to the sail spinning plane;
α ≜ E-sail cone angle; τ ∈ [0, 1] ≜ E-sail switching parameter; subscript 0 ≜ initial value.

E-sail thrust model (Huo et al., 2018)
Propulsive acceleration components

aESr = τ
ac0

2m

(r⊕

r

) (
1 + cos2 α

)
aESθ

= τ
ac0

2m

(r⊕

r

)
cos α sin α

Initial characteristic acceleration is
calculated at t0 ≜ 0 (m = 1) at Sun-Earth
distance (r = r⊕) for a Sun-facing E-sail
(i.e., α = 0).
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Mathematical model Thrust models

Electric engine thrust model
Nomenclature
aT0 ≜ initial maximum propulsive acceleration; âT ≜ thruster acceleration unit vector; ϕ ≜ thrust angle;
κ ∈ [0, 1] ≜ power feeding parameter; g ≜ standard gravity; Isp ≜ specific impulse; subscript 0 ≜ initial value.

Electric engine thrust model
Propulsive acceleration components

aTr = κ
aT0

m

(r⊕

r

)2
sin ϕ

aTθ
= κ

aT0

m

(r⊕

r

)2
cos ϕ

Initial maximum propulsive acceleration
is calculated at t0 ≜ 0 (m = 1) at r = r⊕.

Dimensionless mass flow rate
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Mathematical model Optimal control problem formulation

Optimal control problem formulation (1/3)
Cost function

The dimensionless cost function to be maximized at final time
(subscript f) is:

J = γmf − (1 − γ)tf /T⊕

with T⊕ ≜ 1 year.
γ is a trade-off parameter between two competing requirements:

▶ minimize the flight time;
▶ minimize the propellant consumption.

Adjoint variables
A set of adjoint (costate) variables {λr, λθ, λu, λv, λm} is added to
the set of physical state variables {r, θ, u, v, m}
Each adjoint variable λi is associated with a state variable i.
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Mathematical model Optimal control problem formulation

Optimal control problem formulation (2/3)
Hamiltonian function

The Hamiltonian function is defined as follows:
H ≜ λr ṙ + λθ θ̇ + λuu̇ + λv v̇ + λmṁ

The time history of adjoint variables is given by Euler-Lagrange equations:

λi = −∂H
∂i

with i ∈ {r, θ, u, v, m}

Boundary and transversality conditions (BCs and TCs)
A circle-to-circle, ephemeris-free, interplanetary transfer is analyzed.

▶ Departure (t0)
t0 = 0 , r(t0) = r⊕

θ(t0) = 0 , u(t0) = 0

v(t0) =
√

µ⊙

r⊕
, m(t0) = 1

▶ Arrival (tf )
r(tf ) = rf , u(tf ) = 0

v(tf ) =
√

µ⊙

rf
, λθ(tf ) = 0

λm(tf ) = γ , H(tf ) = 1 − γ

T⊕
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Mathematical model Optimal control problem formulation

Optimal control problem formulation (3/3)
Pontryagin’s maximum principle

The control variables are selected so to maximize the Hamiltonian ∀t ≥ t0

▶ Optimal values of E-sail control variables {τ⋆, α⋆}:

τ⋆ = 1
2 + 1

2 sign
(

1 + 3λu√
λ2

u + λ2
v

)

α⋆ = 1
2 arctan

(
λv

λu

)
▶ Optimal values of electric thruster control variables {κ⋆, ϕ⋆}:

κ⋆ = 1
2 + 1

2 sign
(

λu sin ϕ⋆ + λv cos ϕ⋆ − λm
m

gIsp

)
sin ϕ⋆ = λu√

λ2
u + λ2

v

cos ϕ⋆ = λv√
λ2

u + λ2
v

▶ Thrust angle ϕ must belong to the feasible range [ϕmin, ϕmax].
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Numerical simulations

Numerical simulations
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Numerical simulations Simulation parameters

Simulation parameters
E-sail parameters used in the simulations (Slavinskis et al., 2018):

Quantity Value Measurement unit
Total tether length 20 km
Tether voltage 20 kV
Initial spacecraft mass 20 kg
Initial characteristic acc. ac0 0.307 mm/s2

FEEP Electric thruster parameters used in the simulations
(Grimaud et al., 2019):

Quantity Value Measurement unit
Initial nominal thrust 1.0 mN
Specific impulse Isp 2150 s
Initial spacecraft mass 20 kg
Initial propulsive acc. aT0 0.05 mm/s2

Thrust cone half-angle 30 deg
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Numerical simulations Earth-Mars scenario

Earth-Mars scenario: Pareto front
Earth-Mars transfer: rf = 1.524 au, ϕ ∈ [−30, 30] deg.
Pareto front: optimal flight times and propellant consumptions
obtained with different values of γ.
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Numerical simulations Earth-Mars scenario

Earth-Mars scenario: example (γ = 0.86)
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The electric thruster is switched on for most of the trajectory.

Flight time 829 days, propellant consumption 1.54 kg.
Niccolai (UniPi) Opt. transf. with E-sail and electric thruster New York, 9th June 2023 19 / 27



Numerical simulations Earth-Mars scenario

Earth-Mars scenario: example (γ = 0.91)
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The electric thruster is switched on for shorter firing times.

Flight time 977 days, propellant consumption 0.55 kg.
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Numerical simulations Earth-Venus scenario

Earth-Venus scenario: Pareto front
Earth-Venus transfer: rf = 0.723 au, ϕ ∈ [150, 210] deg
Pareto front: optimal flight times and propellant consumptions
obtained with different values of γ.
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Numerical simulations Earth-Venus scenario

Earth-Venus scenario: example (γ = 0.82)
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The electric thruster is switched for most of the trajectory.

Flight time 472 days, propellant consumption 1.56 kg.
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Numerical simulations Earth-Venus scenario

Earth-Venus scenario: example (γ = 0.91)
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The electric thruster is switched on for shorter firing times.

Control angle variations are slow.

Flight time 607 days, propellant consumption 0.37 kg.
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Conclusions and further developments

Conclusions and further
developments

Niccolai (UniPi) Opt. transf. with E-sail and electric thruster New York, 9th June 2023 24 / 27



Conclusions and further developments

Conclusions
Current technological trends suggest that a nano- or micro-satellite
equipped with a small electric sail with a limited number of
tethers is a realistic near-term scenario.
At the same time, small electric thrusters are currently
commercially available or undergoing space qualification tests.
The combination of a small electric sail and an electric thruster
(as a FEEP) could significantly increase the flexibility of the
propulsion system.
A trade-off between the competing requirements of short flight time
and small propellant consumption is made by tuning a suitable
trade-off parameter.
Numerical simulations highlight that the transfer times towards
inner and outer solar system could be significantly shortened, even
with small propellant conumptions.
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Conclusions and further developments

Further developments

The discussed optimization method could be generalized to
three-dimensional transfers, also keeping into account planetary
eccentricities and inclinations.

Further analysis could consider different mission scenarios, as:
▶ flyby of planets or asteroids;
▶ mission towards outer regions of the solar system.

The control variables related to the thruster and the electric sail may
not be independently selected, so other scenarios could be
considered:

▶ the electric sail could be kept in a Sun-facing configuration;
▶ the electric thruster could be not steerable, so its thrust direction

would only depend on the spacecraft attitude;
▶ constraints on the thrust angle ϕ could be related to the instantaneous

value of α.
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Conclusions and further developments

Thank you for your attention!

Lorenzo Niccolai
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