Optimal deep-space heliocentric transfers with an electric sail and an electric thruster The 6th International Symposium on Space Sailing (ISSS23)

New York, 05-09 June 2023

Lorenzo Niccolai

DEPARTMENT OF CIVIL AND INDUSTRIAL ENGINEERING - AEROSPACE DIVISION

UNIVERSITÀ DI PISA

Niccolai (UniPi)

Opt. transf. with E-sail and electric thruster

Outline

Introduction

Mathematical model

- System dynamics
- Thrust models
- Optimal control problem formulation

3 Numerical simulations

- Simulation parameters
- Earth-Mars scenario
- Earth-Venus scenario

4 Conclusions and further developments

Introduction

Introduction: the E-sail concept

Original concept

- The electric solar wind sail (E-sail) generates thrust from the electrostatic interaction between solar wind ions and charged tethers (Janunhen, 2004).
- The first E-sail design consisted of a very large grid (tens of km) with thousands of tethers: huge problems with deployment and attitude control.

Introduction: current E-sail designs

Current E-sail designs

- Currently, E-sails composed of one or few spinning tethers are considered more realistic.
- A multi-asteroid

touring mission with CubeSats equipped with single-tether E-sails has been proposed (Slavinskis et al., 2018).

 Remote unit should host FEEP thrusters for attitude control.

6/27

Introduction: aim of the work

Motivation of the work

- The thrust generated by an E-sail with a limited number of tethers has a small magnitude.
- The thrust direction is constrained to lie within a cone with half-angle 20 degrees centered along the outward radial direction (<u>Huo et al.</u>, <u>2018</u>).

Aim of the work

- This work assumes that a spacecraft is equipped with two propulsive systems
 - a small E-sail (thrust \propto inverse Sun-spacecraft distance);
 - an electric thruster (such as a FEEP) powered by onboard solar panels (thrust \propto power \propto inverse square Sun-spacecraft distance).
- An optimal control problem is formulated to test the effectiveness of the combination.

Introduction: compatibility of E-sail and electric thruster

Compatibility issues?

- Different combinations are possible:
 - a single small electric thruster placed in the spacecraft body;
 - two or more very small thrusters located in the remote units.
- Option 1 should not generate interactions between the thruster and one or few spinning tethers.
- Option 2 has already been suggested for FEEP-based attitude control.

Niccolai (UniPi)

New York, 9th June 2023 8 / 27

Mathematical model

Spacecraft dynamics

Nomenclature

 $r \triangleq$ Sun-spacecraft distance; $\theta \triangleq$ polar angle; $\{u, v\} \triangleq$ radial and circumferential velocity components; $m \triangleq$ dimensionless mass $a_{ES} \triangleq$ E-sail propulsive acceleration; $a_T \triangleq$ electric thruster propulsive acceleration; $r_{\oplus} \triangleq 1$ au.

E-sail thrust model

Nomenclature

 $a_{c_0} \triangleq$ initial characteristic acceleration; $\hat{r} \triangleq$ radial unit vector; $\hat{n} \triangleq$ unit vector normal to the sail spinning plane; $\alpha \triangleq$ E-sail cone angle; $\tau \in [0, 1] \triangleq$ E-sail switching parameter; subscript $0 \triangleq$ initial value.

E-sail thrust model (Huo et al., 2018)

• Propulsive acceleration components

$$a_{ES_r} = \tau \frac{a_{c_0}}{2m} \left(\frac{r_{\oplus}}{r}\right) \left(1 + \cos^2 \alpha\right)$$
$$a_{ES_{\theta}} = \tau \frac{a_{c_0}}{2m} \left(\frac{r_{\oplus}}{r}\right) \cos \alpha \sin \alpha$$

• Initial characteristic acceleration is calculated at $t_0 \triangleq 0 \ (m = 1)$ at Sun-Earth distance $(r = r_{\oplus})$ for a Sun-facing E-sail (i.e., $\alpha = 0$).

Electric engine thrust model

Nomenclature

 $a_{T_0} \triangleq$ initial maximum propulsive acceleration; $\hat{a}_T \triangleq$ thruster acceleration unit vector; $\phi \triangleq$ thrust angle; $\kappa \in [0, 1] \triangleq$ power feeding parameter; $g \triangleq$ standard gravity; $I_{sp} \triangleq$ specific impulse; subscript $0 \triangleq$ initial value.

Electric engine thrust model

• Propulsive acceleration components

$$\begin{aligned} a_{T_r} &= \kappa \frac{a_{T_0}}{m} \left(\frac{r_{\oplus}}{r}\right)^2 \sin \phi \\ a_{T_{\theta}} &= \kappa \frac{a_{T_0}}{m} \left(\frac{r_{\oplus}}{r}\right)^2 \cos \phi \end{aligned}$$

- Initial maximum propulsive acceleration is calculated at t₀ ≜ 0 (m = 1) at r = r_⊕.
- Dimensionless mass flow rate

$$\dot{m}_{\rm ex} = \kappa \frac{a_{T_0}}{g I_{sp}} \left(\frac{r_\oplus}{r} \right)^2 \label{eq:mex_expansion}$$

Optimal control problem formulation (1/3)

Cost function

• The dimensionless **cost function** to be **maximized** at final time (subscript *f*) is:

$$J = \gamma m_f - (1 - \gamma) t_f / T_{\oplus}$$

with $T_{\oplus} \triangleq 1$ year.

- γ is a trade-off parameter between two competing requirements:
 - minimize the flight time;
 - minimize the propellant consumption.

Adjoint variables

- A set of adjoint (costate) variables {λ_r, λ_θ, λ_u, λ_v, λ_m} is added to the set of physical state variables {r, θ, u, v, m}
- Each adjoint variable λ_i is associated with a state variable i.

Optimal control problem formulation (2/3)

Hamiltonian function

• The Hamiltonian function is defined as follows:

$$\mathcal{H} \triangleq \lambda_r \dot{r} + \lambda_\theta \dot{\theta} + \lambda_u \dot{u} + \lambda_v \dot{v} + \lambda_m \dot{m}$$

• The time history of adjoint variables is given by Euler-Lagrange equations:

$$\lambda_i = -\frac{\partial \mathcal{H}}{\partial i}$$
 with $i \in \{r, \theta, u, v, m\}$

Boundary and transversality conditions (BCs and TCs)

• A circle-to-circle, ephemeris-free, interplanetary transfer is analyzed.

Departure
$$(t_0)$$

$$\begin{array}{l} t_0 = 0 \quad , \quad r(t_0) = r_{\oplus} \\ \theta(t_0) = 0 \quad , \quad u(t_0) = 0 \\ v(t_0) = \sqrt{\frac{\mu_{\odot}}{r_{\oplus}}} \quad , \quad m(t_0) = 1 \end{array}$$
Arrival (t_f)

$$\begin{array}{l} r(t_f) = r_f \quad , \quad u(t_f) = 0 \\ v(t_f) = \sqrt{\frac{\mu_{\odot}}{r_f}} \quad , \quad \lambda_{\theta}(t_f) = 0 \\ \lambda_m(t_f) = \gamma \quad , \quad \mathcal{H}(t_f) = \frac{1 - \gamma}{T_{\odot}} \end{array}$$

Optimal control problem formulation (3/3)

Pontryagin's maximum principle

- The control variables are selected so to maximize the Hamiltonian $\forall t \geq t_0$
 - Optimal values of E-sail control variables $\{\tau^{\star}, \alpha^{\star}\}$:

$$\tau^{\star} = \frac{1}{2} + \frac{1}{2} \operatorname{sign} \left(1 + \frac{3\lambda_u}{\sqrt{\lambda_u^2 + \lambda_v^2}} \right)$$
$$\alpha^{\star} = \frac{1}{2} \arctan\left(\frac{\lambda_v}{\lambda_u}\right)$$

• Optimal values of electric thruster control variables $\{\kappa^{\star}, \phi^{\star}\}$:

$$\kappa^{\star} = \frac{1}{2} + \frac{1}{2} \operatorname{sign} \left(\lambda_u \sin \phi^{\star} + \lambda_v \cos \phi^{\star} - \lambda_m \frac{m}{gI_{sp}} \right)$$
$$\sin \phi^{\star} = \frac{\lambda_u}{\sqrt{\lambda_u^2 + \lambda_v^2}} \qquad \cos \phi^{\star} = \frac{\lambda_v}{\sqrt{\lambda_u^2 + \lambda_v^2}}$$

• Thrust angle ϕ must belong to the feasible range $[\phi_{\min}, \phi_{\max}]$.

Numerical simulations

Simulation parameters

• E-sail parameters used in the simulations (Slavinskis et al., 2018):

Quantity	Value	Measurement unit
Total tether length	20	km
Tether voltage	20	kV
Initial spacecraft mass	20	kg
Initial characteristic acc. a_{c_0}	0.307	mm/s ²

• FEEP Electric thruster parameters used in the simulations (Grimaud et al., 2019):

Quantity	Value	Measurement unit
Initial nominal thrust	1.0	mN
Specific impulse I_{sp}	2150	S
Initial spacecraft mass	20	kg
Initial propulsive acc. a_{T_0}	0.05	mm/s ²
Thrust cone half-angle	30	deg

Earth-Mars scenario: Pareto front

- Earth-Mars transfer: $r_f = 1.524 \, \mathrm{au}, \ \phi \in [-30, \ 30] \, \mathrm{deg}.$
- **Pareto front**: optimal flight times and propellant consumptions obtained with different values of γ .

Remarks

- E-sail+FEEP combination is capable of significantly reducing the transfer time.
- Consuming 1 kg of propellant reduces the flight time of about 200 days (18%).

Earth-Mars scenario: example ($\gamma = 0.86$)

• The electric thruster is switched on for most of the trajectory.

• Flight time 829 days, propellant consumption 1.54 kg.

Niccolai (UniPi)

Opt. transf. with E-sail and electric thruster

Earth-Mars scenario: example ($\gamma = 0.91$)

• The electric thruster is switched on for shorter firing times.

• Flight time 977 days, propellant consumption 0.55 kg.

Niccolai (UniPi)

Earth-Venus scenario: Pareto front

- Earth-Venus transfer: $r_f = 0.723 \text{ au}, \ \phi \in [150, \ 210] \deg$
- **Pareto front**: optimal flight times and propellant consumptions obtained with different values of γ .

- E-sail+FEEP combination is capable of significantly reducing the transfer time.
- Consuming 1 kg of propellant reduces the flight time of about 232 days (31%).

Earth-Venus scenario: example ($\gamma = 0.82$)

- The electric thruster is switched for most of the trajectory.
- Flight time 472 days, propellant consumption 1.56 kg.

Earth-Venus scenario: example ($\gamma = 0.91$)

- The electric thruster is switched on for shorter firing times.
- Control angle variations are slow.
- Flight time 607 days, propellant consumption 0.37 kg.

Conclusions and further developments

Conclusions

- Current technological trends suggest that a nano- or micro-satellite equipped with a small electric sail with a limited number of tethers is a realistic near-term scenario.
- At the same time, **small electric thrusters** are currently commercially available or undergoing space qualification tests.
- The combination of a small electric sail and an electric thruster (as a FEEP) could significantly increase the flexibility of the propulsion system.
- A trade-off between the competing requirements of short flight time and small propellant consumption is made by tuning a suitable trade-off parameter.
- Numerical simulations highlight that the transfer times towards inner and outer solar system could be significantly shortened, even with small propellant conumptions.

Further developments

- The discussed optimization method could be generalized to three-dimensional transfers, also keeping into account planetary eccentricities and inclinations.
- Further analysis could consider different mission scenarios, as:
 - flyby of planets or asteroids;
 - mission towards outer regions of the solar system.
- The control variables related to the thruster and the electric sail may not be independently selected, so other scenarios could be considered:
 - the electric sail could be kept in a Sun-facing configuration;
 - the electric thruster could be not steerable, so its thrust direction would only depend on the spacecraft attitude;
 - \blacktriangleright constraints on the thrust angle ϕ could be related to the instantaneous value of $\alpha.$

Thank you for your attention! Lorenzo Niccolai

Department of Civil and Industrial Engineering – Aerospace Division University of Pisa, Pisa (PI), Italy lorenzo.niccolai@unipi.it