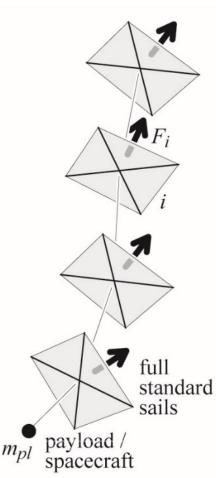
#### The Solar Kite: a New Tethered Sail Concept – a High Level Introduction

Gyula Greschik greschik@teguec.com TentGuild Eng. Co., Boulder, CO, U.S.A.




v2m

#### June 9, 2023

ISSS 2023 – The 6<sup>th</sup> Intl. Symp. on Space Sailing June 5-9, 2023, City Tech, CUNY, New York, USA

#### **Tethered Solar Sails**

#### Harvest thrust with individual surface units along a tension structure

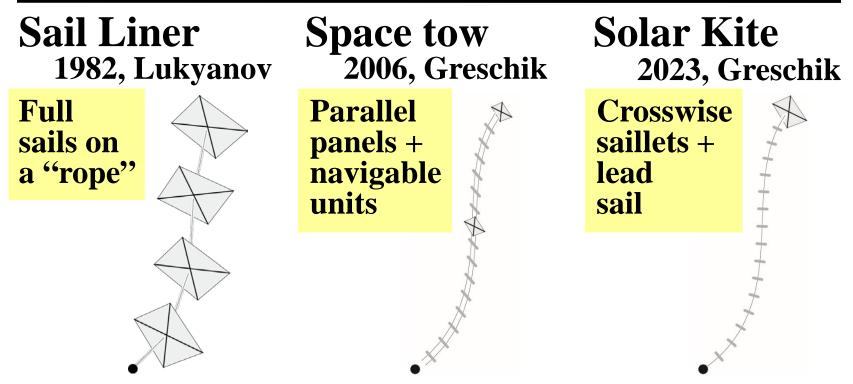




- Modular/Extendible
- Virtually unlimited thrust performance
- System mass is proportional to total thrust

- The scaling penalties are linear (flexed component dimensions don't change)
- Thrust is limited only by cable/filament strength

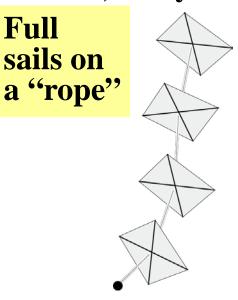
#### **Cons:**


- May be sensitive to some environmental effects (e.g., gravity gradients
- Line failure risk

- Conditions of operability to be examined
- Risk to be assessed
- Can be remedied

#### **Unique to Tethered Sails**

- Flexed member dimensions don't need to increase when a design is scaled up.
  - → Thrust performance depends on the streamlined/minimalist design of flexed components (beams, booms, stiffeners)
- How efficiently units can be stacked is a major practical bottleneck
  - → For the tow & the kite which feature many panels, even minute stowage inefficiencies may render a design less than attractive


#### **Tethered Sail Concepts**



- Linearly coupled "standard" sails: 100s of miles' length, 100s of tons of cargo
- Struct. scaling issues keep undermining the making of even a single sail for cargo purposes
- No struct. scaling issues, low-risk R&D, great thrust efficiency, great packaging
- Control/navigation conundrum, unless the number of <u>navigable</u> units is high
- All of the space tow benefits + easily navigable
- No architectural issues known so far

#### **Some Sail Liner Issues**

#### Sail Liner 1982, Lukyanov



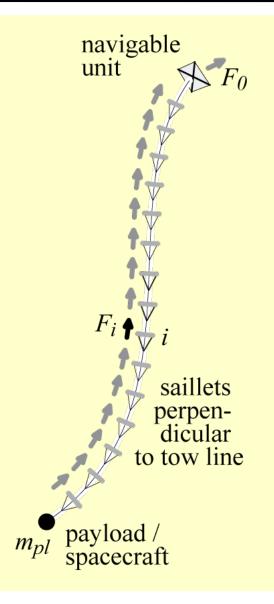
- Linearly coupled "standard" sails: 100s of miles' length, 100s of tons of cargo
- Struct. scaling issues keep undermining the making of even a single sail for cargo purposes

- <u>Complexity</u> Each unit is a "full" sail – in terms of stowage & deployment, operation, navigation, etc.
- <u>Unit size</u> Not any easier to fabricate & handle than a "classic" non-tethered sail by itself
- <u>Development path</u> No advantage over classic sails

### **Some Space Tow Issues**

Space tow 2006, Greschik

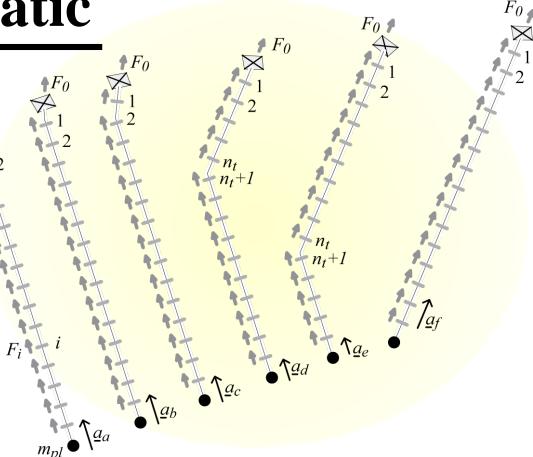
Parallel panels + navigable units


- No struct. scaling issues, low-risk R&D, great thrust efficiency, great packaging
- Control/navigation conundrum, unless the number of <u>navigable</u> units is high

- <u>Dimensional sensitivity</u> Longeron length errors can build up along the structure
- <u>"Constrained" control</u> Poor leverage: shear compliance renders direct shear control impossible
- <u>"Hard to" navigate</u> Poor leverage: the entire tow must be actively turned/re-oriented

#### **The Kite Is Free of These Issues**

- <u>Dimensional sensitivity</u> Longeron length errors can build up along the structure
- <u>"Constrained" control</u> Poor leverage: shear compliance renders direct shear control impossible
- <u>"Hard to" navigate</u> Poor leverage: the entire tow must be actively turned/re-oriented


### **Cross-Aligned Panels Are Used**



- The <u>saillets</u> (panels) are linked by a tow line
- The <u>panels are cross-aligned</u> locally, by their individual suspension
- <u>Lead sail</u> controls operation
- Irregular system dynamics is expected to be tolerable
- Imperfections matter little
- Redundancy possible via extra tension structure
- Pullout & kickoff deployment both feasible
- Stows in a stack

#### **Turn Schematic**

- Lead sail starts turning, after steady state flight w/ accel. a<sub>a</sub>
- Pulled off course, Panel 1 also turns
- Lead sail w/ 1<sup>st</sup> panel together continue exerting lateral pull
- The panels automatically & progressively re-align
- The thrust component in the original flight dir. diminish, while ...

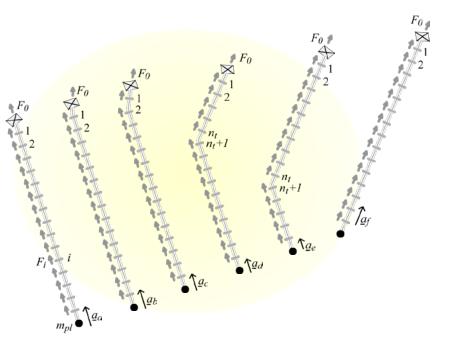


### • ... the thrust in the new direction keeps increasing

Wave dynamic effects are to be examined, but are not expected to be detrimental.

### **Only a Few Points To Address**

- Panel alignment ... by suspension
- <u>Damage tolerance</u>
  <u>by tow line redundancy</u>
- These points will be discussed in detail next
- <u>Twist control</u> ... by panel & suspension geometry
- <u>Lead sail & its control</u> ... with little penalty

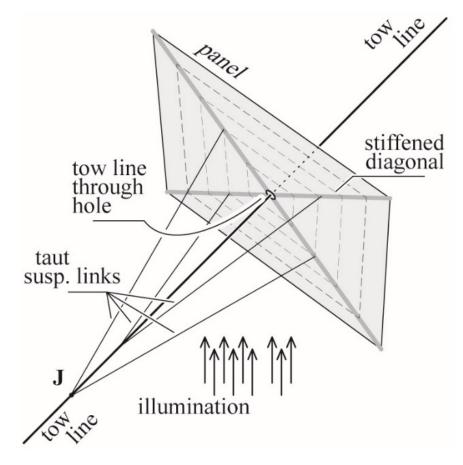

#### Can be resolved by architecture

### Adding, Of Course ...

- Panel alignment
- Damage tolerance
- Twist control
- Lead sail & control
- <u>Dynamics & navigation</u> ... to be characterized & optimized: a quantitative problem, will one day be a story by itself
  - Full 3D context makes the problem very complex, but ...
  - <u>Not a bottleneck</u> because the architecture is robustly fault tolerant in terms of dynamics

### **There Is a Twist To The Story**

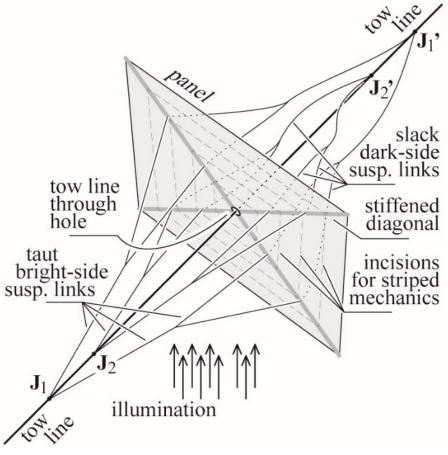
- Panel alignment
- Damage tolerance
- Twist control
- Lead sail & control
- <u>Dynamics</u> <u>& navigation</u>




Some photonic thrust characteristics
 ... may impact on whether the
 on whether the
 It is critical to assume the right reflectivity model
 Will be shown after the architectural review

#### **But First: the Architecture**

- Panel alignment ... by suspension
- <u>Damage tolerance</u> ... by tow line redundancy
- <u>Twist control</u> ... by panel & suspension geometry
- Lead sail & control ... with little penalty


#### **Panel Suspension Schematic**

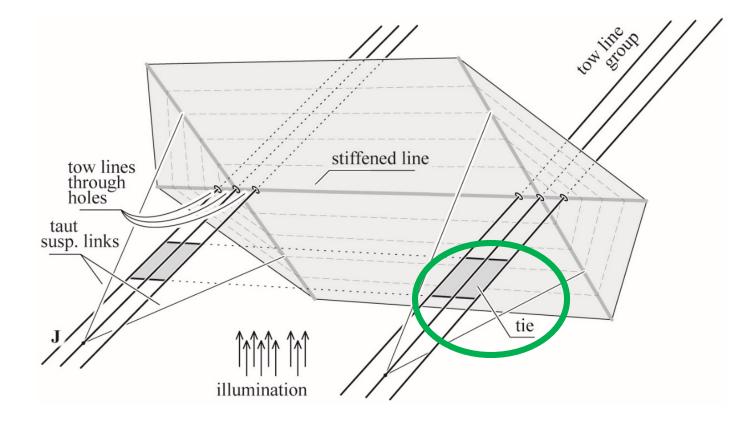


#### **Bare-bone configuration**

- ... to maintain the desired panel orientation
- Suspension link set: the 4<sup>th</sup> one is redundant
- Tow line: *d*=5-10 μm fiber, carbon or other, readily available
- Links: d<1 μm fiber, to be identified
- Filaments laid between panels for storage

#### **Panel Suspension Schematic 2**

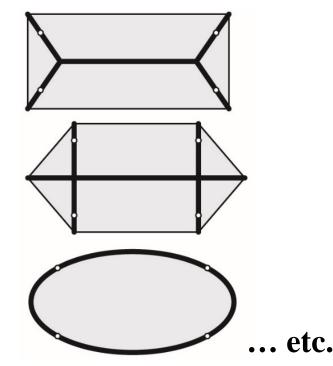



More features added

... to aid deployment, improve performace

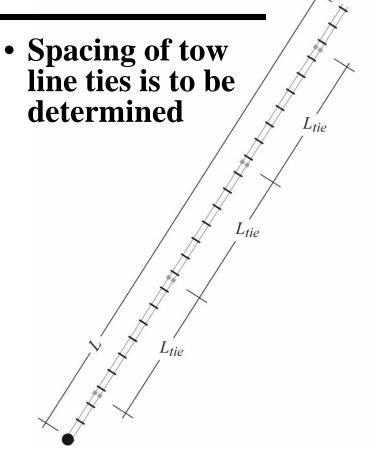
- Forked link improve stiffness
- Bright-side links taut, transmit thrust
- Dark-side links: slack in operation, assist pullout deployment (not needed for kickoff deployment)
- Slack dark-side links boost damping
- Incisions enforce ideal mechanics

#### **Redundancy & Twist Control**


• Multiple tow lines constitute a structural "ribbon"

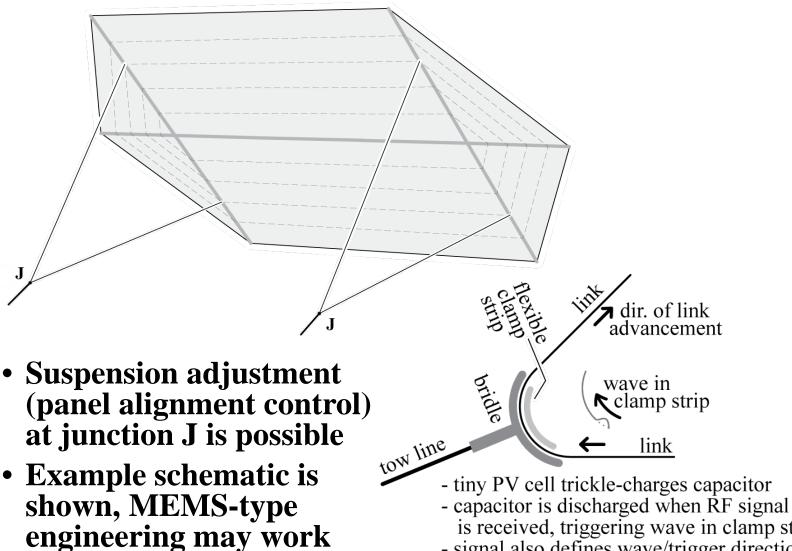


- Twist resistance by geometric nonlinear effects
- Redundancy by periodically coupled multiple tow lines


#### **Structural Footnotes**

• Multiple skeletal options exist for the panels:

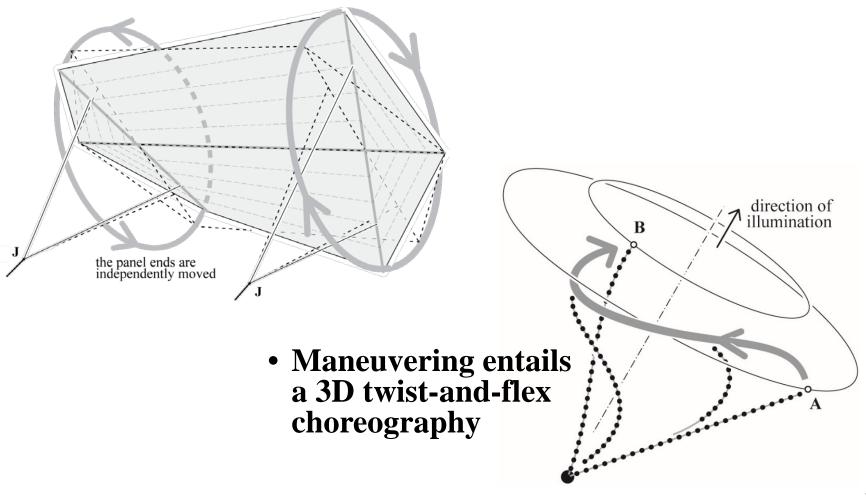



**Dimensions tailored to:** 

- Allow "no-mass" stiffeners
- Facilitate handling + fabrication
- ? 5x10 cm, 30x70 cm, 1x3 m, ...



- To Allow graceful performance degradation
- Defined w/ statistical estimates
- ?  $L=20 \text{ km}, L_{tie}=100 \text{ m}, n_{panels}=10,000$


#### **The Lead Sail**



is received, triggering wave in clamp strip - signal also defines wave/trigger direction

#### The Lead Sail Can Tilt & Twist

... with the two panel ends actuated independent of one another



### **The Concept Has Been Defined**

## ... it is time for a quantitative design study, in order to

- Assess performance
- Reveal performance bottlenecks
- Gain initial insight into some "hands on" issues

Numbers similar to space tow results are obtained, indicating absolutely outstanding performance.

#### Just Like the Space Tow

10000 m<sup>2</sup> sail with 50 kg payload  $\alpha = 30^{\circ}$  angular offset,  $\eta = 0.8$  refl. efficiency

- 13.16 kg 1.313 g/m<sup>2</sup>
   gross structural mass, sail surface specific mass
- 63.16 kg total system mass
- $0.867 \text{ mm/s}^2$  acceleration at 1 AU
- 10.95 km length
- 4.43×10<sup>8</sup> kg-m<sup>2</sup> system mass m. of inertia
- 2.24<sup>2</sup>×0.25 m stowage envelope

... 2000-panel point design in Greschik, <u>Some Struct., Mission Perfmc., and Navig.</u> <u>Features of the Space Tow</u>. ISSS 2007, Herrsching, Germany, June 27-29, 2007.

#### **The Concept Has Been Defined**

# ... it is time for a quantitative design study, in order to

- Assess performance
  - Reveal performance bottlenecks
- Gain initial insight into some "hands on" issues

## ... IS IT, REALLY?



 $m_{p}$ 

#### Take a Closer Look

## ... at the reflective thrust model!

- In a 1<sup>st</sup> approximation model (ideal specular reflection), this configuration works great
- <u>But it is unstable if a</u> <u>surface-parallel thrust</u> <u>component is present</u>
  - A torque about the payload emerges, turning the system to align with the direction of illumination – the only stable orientation.

#### **An Initial Thrust Analysis**

• Was performed with the reflective thrust model established as preferred in an earlier study

Greschik, <u>Direct Thrust Efficiency for</u> <u>the L'Garde Sail Surface with a Linear</u> <u>Reflectivity Model</u>. In Macdonald, ed., Advances in Solar Sailing, Springer Praxis Books, Astronautical Engineering, 2014, pp. 437-455.

#### The Equilibr. State Is Tunable

### $\dots$ via panel tilt $\beta$

- The equilibrium states will be confined to a cone with cone angle γ
- With a symbolic closed form relationship between  $\gamma$  and  $\beta$

How effective will the envisioned navigation schematic be?

 $T+F_0$ 

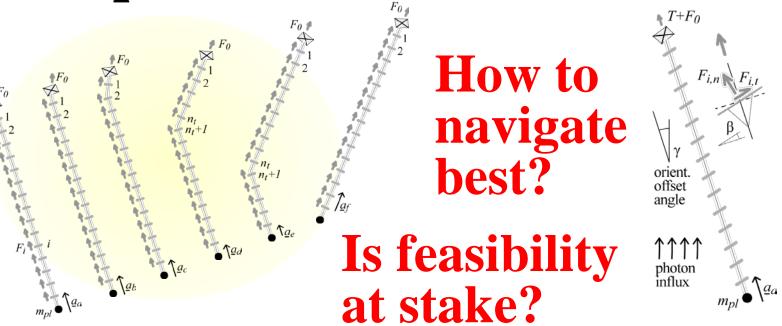
γ

orient.

offset angle

photon influx

 $\underline{a}_a$ 


 $m_{p}$ 

F<sub>i,n</sub>

#### **Two Subtle Effects Are At Bay**

## 1. Progressive auto-alignment to the lead sail

## 2. Restoring forces toward the equilibrium cone

