Uncertainty quantification for solar sails in the near-Earth environment

Juan GARCIA BONILLA, Livio CARZANA, Jeannette HEILIGERS

Faculty of Aerospace Engineering, Delft University of Technology

Solar sailing is a complex and relatively nascent technology

Table of contents

- Uncertainty propagation
- Test case
- Constant Random Value Uncertainties
- Stochastic Process Uncertainties
- Conclusions

Table of contents

- <u>Uncertainty propagation</u>
- Test case
- Constant Random Value Uncertainties
- Stochastic Process Uncertainties
- Conclusions

Uncertainty in the system

Uncertainty in the system

Affects acceleration on the sail

7

Uncertainty in the system

Affects acceleration on the sail

Affects the trajectory

Uncertainty propagation

Uncertainty propagation

12

Uncertainty propagation

13

Uncertainty propagation: sampled-based methods

Uncertainty propagation: sampled-based methods

Uncertainty propagation: Monte Carlo

TUDelft

Uncertainty propagation: Monte Carlo

TUDelft

Uncertainty propagation: Monte Carlo

TUDelft

- Small amount of samples
- Samples are chosen deterministically
- Each sample has an associated weight
- The output distribution is assumed to have a certain shape

Uncertainty propagation: Gauss von Mises method

- A σ -point method
- Uses 2d + 1 samples
- Uses orbital elements to represent the spacecraft's state: {*a*, *h*, *k*, *p*, *q*, *ℓ*}
- Assumes that {a, h, k, p, q} follow a Gaussian (normal) distribution
- Assumes that *l* follows a *von Mises* distribution

Uncertainty propagation: Gauss von Mises vs Monte Carlo

Uncertainty propagation: Gauss von Mises vs Monte Carlo

Table of contents

- Uncertainty propagation
- Test case
- Constant Random Value Uncertainties
- Stochastic Process Uncertainties
- Conclusions

Test case

- Initial Orbit: Dawn-Dusk Sun Synchronous Orbit
- **Perturbations:** J_2 + aerodynamic forces
- Control: Locally optimal steering law that maximizes the rate of change of the semi-major axis
- Figure of Merit: Total increase in semi-major axis after X days of maneuvers

Table of contents

- Uncertainty propagation
- Test case
- <u>Constant Random Value Uncertainties</u>
- Stochastic Process Uncertainties
- Conclusions

33

90

0.85

0.15

0.76

0.00

NEA Scout Thrust and Torque Model, Heaton et al., 2017

Results for 10 days of propagation

TUDelft

Results for 10 days of propagation

Table of contents

- Uncertainty propagation
- Test case
- Constant Random Value Uncertainties
- <u>Stochastic Process Uncertainties</u>
- Conclusions

Orbit and Attitude Performance of the LightSail 2 Solar Sail Spacecraft, Mansell et al., 2020

Nominal Normal:

 $\alpha = 30^{\circ}$

Nominal Normal:

 $\alpha = 30^{\circ}$

Offset:

TUDelft

 $\sigma_{st} = 3^{\circ}$ $\theta = 10^{-4}$

Nominal Normal:

 $\alpha = 30^{\circ}$

TUDelft

$$\sigma_{st} = 1^{\underline{o}}$$
$$\theta = 10^{-4}$$

Nominal Normal:

 $\alpha = 30^{\circ}$

TUDelft

$$\sigma_{st} = 5^{\circ}$$
$$\theta = 10^{-4}$$

Nominal Normal:

 $\alpha = 30^{\circ}$

Offset:

 $\sigma_{st} = 3^{\circ}$ $\theta = 10^{-4}$

Nominal Normal:

 $\alpha = 30^{\circ}$

Offset:

 $\sigma_{st} = 3^{\circ}$ $\theta = 10^{-2}$

Nominal Normal:

 $\alpha = 30^{\circ}$

Offset:

TUDelft

 $\sigma_{st} = 3^{\circ}$ $\theta = 10^{-6}$

Ornstein-Uhlenbeck processes are versatile

Modeling Total Solar Irradiance

Table of contents

- Uncertainty propagation
- Test case
- Constant Random Value Uncertainties
- Stochastic Process Uncertainties
- <u>Conclusions</u>

Conclusions

- Uncertainty in solar-sail optical coefficients and deformation has significant impacts on mission design
- Uncertainty in the specularity coefficient is the largest source of uncertainty
- The Gauss von Mises method is an accurate and performant alternative to Monte Carlo simulations
- A flexible method to model attitude uncertainty was demonstrated
- Attitude uncertainty affects mean and deviation of mission performance

Uncertainty quantification for solar sails in the near-Earth environment

Juan GARCIA BONILLA, Livio CARZANA, Jeannette HEILIGERS

Faculty of Aerospace Engineering, Delft University of Technology

