5-9 June 2023

Space and Exploration Technology Group

James Watt School of Engineering

Adaptive Sliding Mode Control for Asteroid Hovering with Solar Sailing

Application to 433 Eros

Zitong Lin, Matteo Ceriotti, Colin McInnes

Layout

Introduction

Dynamics

- Dynamics in Cylindrical Form
- Control
 - Design of Sliding Surface
 - Design of Controller
 - Design of Adaptive Estimation

Results

- Simulation of Hovering Orbit
- Robustness
- Effect of Hovering Radii and Height
- Effect of Sunlight Direction
- Conclusions

Introduction

Why do we explore asteroids?

- origin of the solar system, planets and life
- space resources extraction
- planetary defence

433 Eros

Will solar sailing make a difference? YES! It's propellant-free!

25143 Itokawa

Image credit: NASA asteroids, comets & meteors

• It takes great advantage in single/multiple asteroids rendezvous missions.

NFAR-Shoemaker

Introduction

Sail operation in proximity of asteroids needs to be studied:

- to maximise scientific return of rendezvous missions
- to support energy-consuming mapping operations, such as hovering

• ...

Difficulties:

- **Underactuated**: control force constrained in both magnitude and direction.
- Non-affine: attitude angles as input is not linear.
- **Complex gravity**: non-spherical perturbation hard to model prior to a mission.

Our idea:

- To reduce one DOF to be controlled. \rightarrow Underactuated
- \checkmark To control the derivatives of attitude angles. \rightarrow Non-affine
- \checkmark To use robust control with adaptive estimation. \rightarrow Complex gravity

Dynamics in cylindrical coordinates $\chi = [\rho, \theta, z]^T$ in asteroid-fixed frame

Objective of control:

 \succ To track constant ρ and z, leaving θ aside.

 $E \xrightarrow{\mathsf{C}_{y}(\varphi)} I \xrightarrow{\mathsf{C}_{z}(\omega t)} a \xrightarrow{\mathsf{C}_{z}(\theta)} h$

Sliding mode control

Control

Tracking error

$$\boldsymbol{e} = \boldsymbol{\chi} - \boldsymbol{\chi}_{\boldsymbol{d}} = \begin{bmatrix} \rho - \rho_{\boldsymbol{d}} \\ z - z_{\boldsymbol{d}} \end{bmatrix}$$

Sliding surface

$$s = \dot{e} + \mathbf{k} \mathbf{e}$$

Non-singular terminal sliding surface

$$\boldsymbol{\sigma} = \boldsymbol{s} + k_0 \dot{\boldsymbol{s}}^{\overline{q}}$$

 $\sigma = \mathbf{0} \rightarrow s = \mathbf{0} \rightarrow e = \mathbf{0}$

k, k₀ – positive numbers
p, q – positive odd number, 1 < p/q < 2

Gravity used is different in control and dynamics!

polyhedron gravity = mass point gravity + disturbances

irregular-shape perturbation / high-order harmonics

Control

Objective of control:

> To control
$$\dot{\boldsymbol{u}} = [\dot{\alpha}, \dot{\delta}]^T$$
 instead of $\boldsymbol{u} = [\alpha, \delta]^T$

Further differentiate the dynamics

rther differentiate the dynamics

$$\dot{\chi} = h(\chi, \dot{\chi}) + \dot{C}_{I}^{o}C_{E}^{I}a_{SRP} + C_{I}^{o}C_{E}^{I}B(u)\dot{u}$$

$$\dot{f}$$
known portion

$$\dot{\chi} = \begin{cases} \rho(\omega + \dot{\theta})^{2} + g_{\rho} + f_{\rho} \\ \underline{g_{Z}} + f_{Z} \end{cases}$$
known portion: $||d|| \leq D$

Control

Differentiate *s* twice and σ once:

$$\ddot{\mathbf{s}} = \mathbf{h} + \dot{\mathbf{C}}_{I}^{o} \mathbf{C}_{E}^{I} \mathbf{a}_{SRP} + \mathbf{C}_{I}^{o} \mathbf{C}_{E}^{I} \mathbf{B}(\mathbf{u}) \dot{\mathbf{u}} - \ddot{\mathbf{\chi}}_{d} + \mathbf{k}\ddot{e}$$
$$\dot{\boldsymbol{\sigma}} = k_{0} \frac{p}{q} \operatorname{diag}(\dot{\mathbf{s}}^{\frac{p}{q}-1}) \left(\frac{q}{kp} \dot{\mathbf{s}}^{2-\frac{p}{q}} + \ddot{\mathbf{s}}\right)$$
Design reaching law as:
$$\dot{\boldsymbol{\sigma}} = \operatorname{diag}(\dot{\mathbf{s}}^{\frac{p}{q}-1}) \left(-\varepsilon_{1}\boldsymbol{\sigma} - \varepsilon_{2}\operatorname{sign}(\boldsymbol{\sigma})\right)$$

rapidity term robustness term

Control law obtained:

$$\dot{\boldsymbol{u}} = (\mathbf{C}_{I}^{o}\mathbf{C}_{E}^{I}\mathbf{B})^{-1} \left[\ddot{\boldsymbol{\chi}}_{d}^{i} - \boldsymbol{h} - \dot{\mathbf{C}}_{I}^{o}\mathbf{C}_{E}^{I}\boldsymbol{a}_{SRP} - k\ddot{\boldsymbol{e}} - \frac{q}{kp}\dot{\boldsymbol{s}}^{2-\frac{p}{q}} - \varepsilon_{1}\sigma - \varepsilon_{2}\mathrm{sign}(\boldsymbol{\sigma}) \right]$$

Control

Objective of control:

> To be robust against gravity disturbances.

Adaptive estimation on boundary of gravity disturbances:

$$\dot{\hat{D}} = \gamma \frac{k_0 p}{q} \operatorname{diag}(\dot{s}^{\frac{p}{q}-1}) |\sigma|$$

$$\downarrow$$

$$\dot{u} = (\mathbf{C}_I^o \mathbf{C}_E^I \mathbf{B})^{-1} \left[\ddot{\boldsymbol{\chi}}_d^{-} - \mathbf{h} - \dot{\mathbf{C}}_I^o \mathbf{C}_E^I \boldsymbol{a}_{SRP} - k\ddot{\boldsymbol{e}} - \frac{q}{kp} \dot{s}^{2-\frac{p}{q}} - \varepsilon_1 \sigma - \varepsilon_2 \operatorname{sign}(\sigma) \right]$$

$$\Longrightarrow \quad \dot{\boldsymbol{u}} = (\mathbf{C}_I^o \mathbf{C}_E^I \mathbf{B})^{-1} \left[\ddot{\boldsymbol{\chi}}_d^{-} - \mathbf{h}_0 - \hat{\boldsymbol{D}} - \dot{\mathbf{C}}_I^o \mathbf{C}_E^I \boldsymbol{a}_{SRP} - k\ddot{\boldsymbol{e}} - \frac{q}{kp} \dot{s}^{2-\frac{p}{q}} - \varepsilon_1 \sigma - \varepsilon_2 \operatorname{sign}(\sigma) \right]$$

		-
Constants	Value	
Eros Gravitational	4.4602×10 ⁴	
Constant μ	km³/s²	
Eros dimension	34.4 imes 11.2 $ imes$	
	11.2 km	
Eros Spin Rate ω	3.3117×10 ⁻⁴	
	rad/s	
Eros Heliocentric	1.6917×10 ⁶ km	ľ
Distance <i>R</i>		∠ [k
Solar Incidence	0 deg	
Angle φ		
Sail Lightness	0.2	
Number β		

Initial conditions:

$$[\rho, \theta, z]^{T} = [18.1 \text{ km}, -\pi/2, 39.9 \text{ km}]$$
$$[\dot{\rho}, \dot{\theta}, \dot{z}]^{T} = [-1 \text{ m/s}, -3.3117 \times 10^{-4} \text{ rad/s}, 1 \text{ m/s}]$$

-20

-20

x [km]

y [km]

James Watt School of Engineering

Space and Exploration Technology Group

Robustness

Response to cone angle with nominal asteroid mass (blue) and double nominal mass (red)

James Watt School of Engineering

Space and Exploration Technology Group

Robustness

Response to cone angle with ideal sail (blue) and degraded sail (red)

Optical degradation:

$$\beta(t) = 0.05e^{-t/13500} + 0.15$$

 $\beta: 0.2 \xrightarrow{15h} 0.15$

Effect of Hovering Radii

Zitong Lin, Matteo Ceriotti, Colin McInnes

Effect of Hovering Height

Response to cone angle with different height ρ = 18 km, z = 40 km (blue), z = 30 km (red), z = 50 km (yellow) 58 56 50 54 40 cone angle α [deg] 20 20 48 48 46 30 [wy] 20 z Eros z=40km 10 z=30km z=50km 0 44 z = 40 km 10 z = 30 km z = 50 km 0 42 10 0 -10 -10 y [km] 40 x [km] 10 15 20 0 5 25 time [hr]

 $z \nearrow$, $\alpha \nearrow$, oscillation of $\alpha \searrow$

Zitong Lin, Matteo Ceriotti, Colin McInnes

James Watt School of Engineering

Space and Exploration Technology Group

Effect of Sunlight Direction

Sunlight incidence angle is a variable, affected by:

- Eros orbital inclination
- Eros obliquity to the ecliptic

Image credit: Space Exploration of Asteroids: The 2001 Prospective (R. Farquhar)

James Watt School of Engineering

Effect of Sunlight Direction

James Watt School of Engineering

Effect of Sunlight Direction

Control breaks down when required control force is sunward.

James Watt School of

Conclusions

- It finds a path to tackle underactuated and non-affine control of solar sail;
- It is robust to gravity disturbances and unmodelled sail error;
- Small hovering radius and height \rightarrow small cone angle response;
- Small hovering radius and large hovering height \rightarrow slight cone angle oscillation;
- Control is only effective when sunlight incidence angle is small.

Future works

- Quantitative research on feasible hovering radius, height and sunlight incidence angles;
- Direct adaptive estimation on gravity property and sail performance, instead of boundary of gravity disturbances.

Space and Exploration Technology Group

Thank you for listening!

James Watt School of Engineering