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INTRODUCTION

This research aims to derive a comprehensive mathematical model of a 
flexible solar sail (or solarcraft).

Such a model accounts for rigid body and elastic motions as well as 
their interactions.

Model can be used for various purposes including:

• Predicting behavior of solarcraft

• computing necessary open-loop control inputs to steer the solarcraft to 
follow a desired maneuver

• designing a feedback control to stabilize the solarcraft about the 
desired maneuver
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We consider a square solar sail.

We assume the sail film is connected to the booms continuously.
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Local axes for Control Vane 1-4 are obtained from :

1. Rotation  about to the axes 
ᇱ


ᇱ


ᇱ

2. Rotation  about 
ᇱ to the axes 

ᇱᇱ

ᇱᇱ


ᇱᇱ

3. Rotation  about 
ᇱᇱ to the local axes   

for .

For the square solar sail, .
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Equations of motion of flexible solar sail can be obtained by means of 
the Lagrange’s equations of motion in quasi-coordinates.

Force Equations:
3 nonlinear ODEs

Moment
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3 nonlinear
ODEs
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3 nonlinear PDEs
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