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INTRODUCTION

This research aims to derive a comprehensive mathematical model of a
flexible solar sail (or solarcraft).

Such a model accounts for rigid body and elastic motions as well as
their interactions.

Model can be used for various purposes including:
* Predicting behavior of solarcraft

* computing necessary open-loop control inputs to steer the solarcraft to
follow a desired maneuver

* designing a feedback control to stabilize the solarcraft about the
desired maneuver
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We assume the sail film 1s connected to the booms continuously.
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Body axes xyz are obtained from the inertial axes XY Z:

1. Rotation 8 about Y to the axes x;y,24
2. Rotation ¢ about x; to the axes x,y,7,

3. Rotation i about z, to the body axes xyz

¢, 6 and Y are the Euler angles.
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The velocity of the origin 0 of the body axes v = [Vx Vy V|7,

The angular velocity of the body axes w = [Wx @y wZN

In inertial axes components
In body axes

V = C(gb, H,lp)R‘/—) R — CT(gb, H,IIJ)V components
w=E@®¥)O -  0=E$Pw

where@ =[¢p 6 Y]’.
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v and w are given in body axes components.

If we writev=R* and w = 0* - R*+*R, 0"*80
then R* and 0" do not correspond to any physical coordinates.
For this reason, they are referred to as quasi-coordinates and

v and w are referred to as quasi-velocities.
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Local axes for Control Vane 1-4 are obtained from xyz:

1. Rotation a; about z to the axes x;y;z;
r__rr_y»Jr

2. Rotation B; about x; to the axes x;'y;"z;

3. Rotation §; about y;" to the local axes 1;y;k;
fori = 1,2,3,4.

For the square solar sail, a; = 225° a, = 45°, a3 = 315° a, = 135°.
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EQUATIONS OF MOTION

Equations of motion of flexible solar sail can be obtained by means of
the Lagrange’s equations of motion in quasi-coordinates.

Force Eauations | (55) LoPE 005 g

dt \ Ov ov OoR

g[?;:teig;s: d aL ~ a’C ~ BL { g T | 8’5
3 onlnar |G (aw) T T T E) 5 = M
Faatons govening | (%) _k ARy

3 nonlinear PDEs 8t 8u 811 8u

where £ = T — V.is the Lagrangian
\

Kinetic energy Potential energy
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The elastic displacement

u=[0 0 w]"

1s discretized by the Finite Elements
Method (FEM).

2n? triangular elements.

2n beam elements.

(n + 1) nodes.
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Potential energy can be written in the quadratic form:
V=V,+V,=3A"KA

where K 1s the global stiffness matrix and

&
T l' T
A = [R 0 q - } Vector of nodal displacements

1s the global displacement vector.
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Kinetic energy can be written in the quadratic form:

T=IVIMV

9
where M 1s the global mass matrix and

T
T L
V — 'V Y, S - } Vector of nodal velocities, s = q

1s the global velocity vector.
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Kinetic energy can be written in the quadratic form:

T=43VIMV
where M 1s the global mass matrix and
4
V . VT W i1 S?} Vector of nodal velocities, s = q

1s the global velocity vector.

Both K and M are (n? + 4n + 6) X (n® + 4n + 6).



Bl sacramenTo state EQUATIONS OF MOTION

We assume that the sail film 1s perfect reflector.



Bl sacramenTo state EQUATIONS OF MOTION

We assume that the sail film 1s perfect reflector.

The solar radiation pressure over the ith finite element is then



Bl sacramenTo state EQUATIONS OF MOTION

We assume that the sail film 1s perfect reflector.

The solar radiation pressure over the ith finite element 1s then

| S T Ra12ca .. ol o
(1) _ oX0 0 @) . a@)|° a)
f\" =2 ; [R(i)] {R n } n




Bl sacramenTo state EQUATIONS OF MOTION

We assume that the sail film 1s perfect reflector.

The solar radiation pressure over the ith finite element 1s then

Solar radiation flux
T 2
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Solar radiation flux
; R O 12 .
(2) _ 0 (2] 206" =4)

Speed of light — &




B sacnaenro sma EQUATIONS OF MOTION

We assume that the sail film 1s perfect reflector.

The solar radiation pressure over the ith finite element 1s then

Solar radiation flux Unit vector along position

. T SO RO 2, t/2 vector from O to a point in ith

f(z) =2 [R()] {R ), Il(z)} n(z) finite element
(

Speed of light — &



B sacnaenro sma EQUATIONS OF MOTION

We assume that the sail film 1s perfect reflector.

The solar radiation pressure over the ith finite element 1s then

Solar radiation flux Unit vector along position
. T SO RO 2, t/Q vector from O to a point in ith
f(z) =2 [R()] {R ), Il(z)} n(z) finite element

(

Unit normal vector to
ith element

Speed of light — &



B sacnaenro sma EQUATIONS OF MOTION

We assume that the sail film 1s perfect reflector.

The solar radiation pressure over the ith finite element 1s then

Solar radiation flux Unit vector along position
. T SO RO 2, 4(/2 vector from O to a point in ith
f(z) =2 [R()] {R ), Il(z)} n(z) finite element

?

Unit normal vector to
ith element

Speed of light — &

The solar radiation force over the control vanes are



Bl sacramenTo state EQUATIONS OF MOTION

We assume that the sail film 1s perfect reflector.

The solar radiation pressure over the ith finite element 1s then

Solar radiation flux Unit vector along position
. T SO RO 2, t/2 vector from O to a point in ith
f(z) =2 [R()] {R ), ﬁ(z)} ﬁ(z) finite element

(

Unit normal vector to
ith element

Speed of light — &

The solar radiation force over the control vanes are

C Cc

. So [ Ba 1% o rnve  ou |
£ = 9 0[ 0.] 2 [R@-ﬁ(@)fﬁg@), i=1,23,4
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The total virtual work 1s

W = 6W,, + Wy, + W, + W, = FT6R* + M" 00" + Q" iq
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where
Ba(t)
A1) Bult)
(it )= [ V() ] ,u(t) = 5, (1)
sl




Bl sacramenTo state EQUATIONS OF MOTION

The equations of motion can be cast in the state-space form

x(t) = f[x(t), u(t)]

where
pa(t)

(it )= [ éég ] ,u(t) = ?f((t)) < Control vane angles
54(0)
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EQUATIONS OF MOTION

The system described by the state-space equation is highly nonlinear

due to
* rigid body motion
e solar radiation

* gravitational forces
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The system is high dimensional since it includes 2(n? + 4n + 6) first-

order equations.

Due to the nature of FEM, a large n must be used for sufficiently

accurate representation of the system.
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The system is also underactuated because the number of control inputs

1s many times smaller than the number of degrees of freedom.
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The perturbation solution separates the equation into the zero-order

equation
x(t) = £x(t), a(?)
for the desired nominal dynamics and the first-order equation

x(t) = A[x(t), a(t)] x(t) + Bx(t), u(t)] a(t)

for the small p mrbati% the nominal dynamics.

Coefticient matrices, both functions of X(t) and u(t)
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The zero-order equation is highly nonlinear and high dimensional.

Its inverse dynamics is used to compute an open-loop control u(t) to

achieve a desired zero-order state X(t).

The first-order equation 1s linear, but as high dimensional as the original

equation.

We note that the zero-order state X(t) and control input u(t) enter into

the first-order equation as inputs.
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PERTURBATION SOLUTION

As a result, the first-order equation 1s time-invariant if X and U are

constant.
The first-order equation is time-varying if X and u are time-dependent.
The first-order equation is used to assess stability about the maneuver.

It can also be used to design feedback control to attenuate perturbations.
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The problems with high-dimensionality and underactuation are obviated

by a model-reduction approach in which

where U, 1s the matrix of k vibration modes and
[ &1 | |
&a : Up.

| € | T



Bl SACRAMENTO STATE NUMERICAL APPLICATION

Numerical Data

Length, L = 100 m Boom length, L, = 1004/2 m

Membrane thickness, t,, = 2.5 um Membrane density, p,, = 1660 kg/m?

Boom wall thickness, ¢, = 0.1 mm Boom Radius, 7, = 3.5 cm

Boom density, p, = 1660 kg/m* Boom Young’s Modulus, £}, = 68.95 GPa
Payload mass, M, = 20 kg Payload position, r, = [0 0 — 0.1]" m
Control panel length, [ = 5 m Control panel mass m,. = 0.3124 kg
Damping factor ¢ = 0.005 Tension, 7' = 0.0172 N/m

Solar Radiation flux, S; = 1368 N/m? | Sun to Earth Distance, Ry = 1.496 x 10! m
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First 4 nonzero eigenfrequencies vs. n
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Shapes of first 8 vibration modes for n = 14 (continued)
I1th Mode at @, =0.144522 rad/s 12th Mode at m,=0.164341 rad/s
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NUMERICAL APPLICATION

Solarcraft in a circular orbit around the Sunat R = Ry = 1 AU

v = R() = constant

Constant turn rate
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Convergence of the elastic displacements at the points a and b

4 6 8 _1.0 _____ T i -0.92 4 6 8 ) 0 1 3 _____
-145F == ' gl
" 094 pm———- -
-1.46 o [ l’_
P o i /
v [ /
-1.47 / =0.96 |- /
/’ [ I’
- / -
148 K 098f /7
-1.49 i T
/ -1.00F ¢
-1.50 / L 7
7/ i II
7 [
-151F ¢ -1.02 4
é 4




B SR T NUMERICAL APPLICATION

: . al \ \ 5 b3 1
d n=4 N\
[ \

Beam Element  Membrane Element Node Number
Number Number
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Elastic shape for n = 14 during the circular orbit

-05

w(x,y) [m] %o
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SACRAMENTO STATE

Redefine the Possible

Equilibrium Values and Eigenvalues of A for the circular orbit at 1 AU

NUMERICAL APPLICATION

n==~06 n=10 =14
() 1.767 x 10~ rad/s 1.767 x 10~ rad/s 1.767 x 10~ rad/s
ny —1.4668 m —1.4479 m —1.4444 m
wy, —0.9380 m —0.9233 m —0.9209 m
#of \’s | 132 292 516
A_4 0 0 0
5.6 + 1.438 x 10~° + 1.416 x 10~° + 1.355 x 10~°
A7.8 +41.767 x 10~ +41.766 x 10~ +41.769 x 10~
A9.10 +42.421 x 10~° +42.388 x 10~ +i2.685 x 10~
A11.12 +0.001148 +0.001112 +0.001101
A13.14 —0.000332 £ 70.078881 | —0.000332 £ 20.078351 | —0.000332 + ¢:0.078170
A5.16 —0.000469 =+ 70.093866 | —0.000463 4 20.092554 [ —0.000461 + 20.092144
A17.18 —0.000943 + 70.133046 | —0.000910 4 20.129813 [ —0.000902 + 20.128940
A19.20 —0.001199 +£ 0.150027 | —0.001148 % 20.145763 | —0.001133 £ ¢0.144508
A21.92 —0.001212 £ 70.150838 | —0.001159 4 20.146498 | —0.001145 +:0.145234
A23 94 —0.001450 + 70.164970 | —0.001385 4 20.160137 [ —0.001365 + 70.158598
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SACRAMENTO STATE

Redefine the Possible

Equilibrium Values and Eigenvalues of A for the circular orbit at 1 AU

NUMERICAL APPLICATION

A25 .26

—0.002715 £ 20.225751

—0.002405 =+ 20.210986

—0.002320 <+ 20.206787

/\27“28

—0.003044 + :0.239051

—0.002731 £ 0.224812

—0.002634 + ¢0.220319

/\‘29.130

—0.003045 +£ ¢0.239097

—0.002733 + #0.224893

—0.002636 + #0.220414

A31.32

—0.003383 £+ ¢0.251986

—0.003087 £+ 70.239036

—0.002980 + ¢0.234326

A33.34

—0.004655 % 20.295580

—0.003896 =+ :0.268537

—0.003689 + 70.260732

A35.36

—0.004670 % 20.296069

—0.003957 £ 0.270620

—0.003765 £ 20.263389

A37.38

—0.004759 + 20.298872

—0.004083 + :0.274897

—0.003882 + :0.267456

A39.40

—0.004801 + 0.300184

—0.004094 =+ :0.275274

—0.003890 +£ #0.267715

/\41.42

—0.007565 £ 70.376808

—0.005233 £+ 70.311208

—0.004876 +£ ¢0.299754

A43.44

—0.007847 £ 10.383764

—0.005298 £+ 40.313130

—0.004891 +40.300194

)\45.4(5

—0.008280 + 70.394194

—0.005363 £ 70.315035

—0.004985 +:0.303071

/\47.48

—0.009178 + 70.415023

—0.005558 % 20.320716

—0.005214 +£ 20.309937

/\49.:'3(]

—0.009414 + 20.420309

—0.006960 + 70.358878

—0.006383 £ 70.342945

A51 .52

—0.009545 + 20.423216

—0.007144 + 70.363611

—0.006547 £ :0.347303

/\53.54

—0.009557 £ ¢0.423487

—0.007166 £ 0.364171

—0.006559 + 0.347639

A55.56

—0.009557 £ i0.423487

—0.007224 £ :0.365625

—0.006633 +£ ¢0.349576

)\57.58

—0.009557 £ i0.423487

—0.008991 + 70.407885

—0.008106 + 70.386430




& SACRAMENTO STATE

Redefine the Possible

Equilibrium Values and Eigenvalues of A forn = 14

NUMERICAL APPLICATION

0.25R, 0.5R, 0.75R, 1.25R,
Q 9.615 x 10~ rad/s 4.999 x 10~ rad/s 3.899 x 10~ " rad/s 2.5284 x 10~ rad/s
W —4.9852 m —5.7761 m —6.5373 m —5.1013 m
wy —2.8067 m —3.6829 m —4.0839 m —2.4573 m
M—sa | O 0 0 0
5.6 + 7.286 x 1073 +2.070 x 107 +2.960 x 10~7 +4.370 x 107
A7 8 +i9.614 x 10~7 +44.997 x 107 +43.899 x 10~7 +42.529 x 10~°
Mo1o | +i1.243 x 10~° +48.798 x 10~ +47.670 x 10~ +i6.161 x 107
Mi112 | £0.001252 +0.004405 +0.007057 +0.010065
A3.14 | —0.000332 +£40.078184 | —0.000332 +40.078184 | —0.000332 + 0.078184 [ —0.000332 £ i0.078184
Ais.16 | —0.000461 +40.092155 | —0.000461 + 70.092155 | —0.000461 + 0.092155 | —0.000461 =+ i0.092155
Ai71s | —0.000002 +i0.128051 | —0.000902 + 70.128051 | —0.000902 + 70.128951 | —0.000902 + 70.128951
Moo | —0.001133 +£40.144518 | —0.001133 +40.144514 | —0.001133 +40.144510 | —0.001133 £ 0.144516
o199 | —0.001145 +£40.145244 | —0.001145 +40.145244 | —0.001145 + 70.145244 | —0.001145 + 0.145244
Aogog | —0.001365 +i0.158607 | —0.001365 + i0.158607 | —0.001365 %+ i0.158607 | —0.001365 + i0.158607
Aosos | —0.002320 £ i0.206795 | —0.002320 £ 0.206795 | —0.002320 £ i0.206795 | —0.002320 + 0.206795
Aoz og | —0.002634 £ i0.220326 | —0.002634 + i0.220326 | —0.002634 + i0.220327 | —0.002634 + i0.220333
oo g0 | —0.002636 +i0.220421 | —0.002636 + i0.220421 | —0.002636 + i0.220421 | —0.002636 + :0.220421
A3132 | —0.002980 =+ 0.234332 | —0.002980 + i0.234332 | —0.002980 + i0.234332 | —0.002980 =+ 0.234332
A33.34 | —0.003689 +i0.260738 | —0.003689 + i0.260738 | —0.003689 + i0.260738 | —0.003689 + i0.260738
3536 | —0.003765 +i0.263395 | —0.003765 + i0.263395 | —0.003765 + i0.263395 | —0.003765 + i0.263395




O NUMERICAL APPLICATION

Elastic shapes forn = 14

w(x,y) [m] j
-50

0

| 4

-4
-50

-2
we) [m) ) Q w(xy) [m]



§\ SACRAMENTO STATE

Redefine the Possible

NUMERICAL APPLICATION

Equilibrium Values and Eigenvalues of 4, forn = 14

k=4 k = 8 (Closed-Loop) =1 k=12
Q 1.76T x 107" rad/s 1.767 x 10~ rad/s 1.767 x 10~ rad/s 1.767 x 10~ " rad/s
W, —1.4393 m —1.4393 m —1.4393 m —1.4393 m
wy, —0.9493 m —0.9493 m —0.9493 m —0.9493 m
A—gq4 |0 0 0 0
5.6 + 8.145 x 10~° 3.31 x 107° £¢0.000029 | + 1.451 x 10" +1.451 X 10~
A78 +41.767 x 10~ +41. 767 x 107 +i1.767 x 10~° +41.767 x 10~
Ao 10 +i3.096 x 10~° —0.076316 £+ 70.076471 +42.432 x 10~ +42.432 x 10~7
At1.12 | £0.001171 —0.001431 £+ ¢0.001351 +0.001171 +0.001171
A3.14 | —0.000461 +70.092155 | —0.000461 £ 70.092155 —0.000461 +40.092144 | —0.000461 £ 70.092144
As.16 | —0.000902 £ 40.128951 | —0.000902 £ 70.128951 —0.000902 £ i0.128937 | —0.000902 + i0.128937
A17.18 | —0.001106 % 20.142740 [ —0.001106 4 70.142740 —0.001105 +40.142725 | —0.001105 =+ 70.142716
A1o.20 | —0.001133 +40.144518 | —0.001251 £ 70.144029 —0.001133 +i0.144506 | —0.001133 + i0.144506
A2199 | —0.001372 £ 20.159001 | —0.001372 + 20.159001 —0.001372 £+ 40.158991 | —0.001372 + 20.158991
Aoz og4 | —0.002320 % 70.206795 | —0.002320 £ :0.206795 —0.002320 + i0.206785 | —0.002320 =+ 20.206785
Aos 96 | —0.002626 £+ 70.219981 | —0.002627 + 20.219961 —0.002618 +70.219630 | —0.002617 £+ 20.219613
Ao7og | —0.000721 +41281.120 | —0.000721 £+ 21281.120 —0.002634 £ :0.220317 | —0.002634 + 20.220317
A20.30 —0.002980 =+ i0.234325 | —0.002980 = 70.234325
A31,32 —0.000729 £+ 71283.280 | —0.003765 + i0.263390
A33.34 —0.003836 + 70.265872
A35,36 —0.000776 +i1291.120
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SACRAMENTO STATE

Redefine the Possible

NUMERICAL APPLICATION

Equilibrium values for n = 14 at a circular orbit at the L1 libration

point (f; = B, = B3 =4 =0, 01 = 6, = 03 = 84 = 9)

0 = O rad 0 = m/6 rad 0 = m/4 rad 0 =m/3 rad
R 1.38144 x 10" m | 1.38187 x 101 m | 1.38224 x 10" m | 1.38252 x 10" m
Ro— R | 1.14555 x 10" m | 1.14126 x 10" m | 1.13763 x 10'° m | 1.13484 x 10"’ m
W, —1.6924 m —1.6977 m —1.7022 m —1.7056 m
wy, —1.0791 m —1.0806 m —1.0819 m —1.0829 m
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Redefine the Possible

NUMERICAL APPLICATION

Equilibrium values for n = 14 at a circular orbit at the L1 libration

point (f; = B, = B3 =4 =0, 01 = 6, = 03 = 84 = 9)

0 = 0rad

0 = m/6 rad 6 = m/4 rad 0 =m/3 rad
R 1.38144 x 10" m | 1.38187 x 101 m | 1.38224 x 10" m | 1.38252 x 10" m
Ro— R | 1.14555 x 10" m | 1.14126 x 10" m | 1.13763 x 10" m | 1.13484 x 10'"¥ m
W, —1.6924 m —1.6977 m —1.7022 m —1.7056 m
wy, —1.0791 m —1.0806 m —1.0819 m —1.0829 m

For a conventional spacecraft R = 1.48118 x 10! m and

R—R, = 148242 x 109 m.
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This presents a comprehensive mathematical model for the dynamics of
a solarcraft, accounting for both rigid body and elastic motions and their

Interactions.

Nonlinearity of the governing equation 1s dealt with a perturbation
solution that separates the equation into zero-order and first-order

equations.

The zero-order equation 1s used to design an open-loop control for a

desired maneuver.
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The first-order equation is used to assess the stability about the desired

maneuver and to design feedback control to alleviate perturbations.

High dimensionality and underactuation are dealt with a model

reduction approach.

In numerical application, circular orbits around the Sun are considered.
The zero-order equation 1s used to determine the turn rate and elastic

deformation.
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Circular orbit at the sub-L1 libration point is also considered.

The first-order equation is used to assess the stability about the orbits.
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Circular orbit at the sub-L1 libration point is also considered.
The first-order equation is used to assess the stability about the orbits.

Future research will focus on introduction of more effective control

inputs, and control design.



