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INTRODUCTION

This research aims to derive a comprehensive mathematical model of a
flexible solar sail (or solarcraft).

Such a model accounts for rigid body and elastic motions as well as
their interactions.

Model can be used for various purposes including:
* Predicting behavior of solarcraft

* computing necessary open-loop control inputs to steer the solarcraft to
follow a desired maneuver

* designing a feedback control to stabilize the solarcraft about the
desired maneuver
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We assume the sail film 1s connected to the booms continuously.
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Body axes xyz are obtained from the inertial axes XY Z:

1. Rotation 8 about Y to the axes x;y,24
2. Rotation ¢ about x; to the axes x,y,7,

3. Rotation i about z, to the body axes xyz

¢, 6 and Y are the Euler angles.
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The velocity of the origin 0 of the body axes v = [Vx Vy V|7,

The angular velocity of the body axes w = [Wx @y wZN

In inertial axes components
In body axes

V = C(gb, H,lp)R‘/—) R — CT(gb, H,IIJ)V components
w=E@®¥)O -  0=E$Pw

where@ =[¢p 6 Y]’.
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v and w are given in body axes components.

If we writev=R* and w = 0* - R*+*R, 0"*80
then R* and 0" do not correspond to any physical coordinates.
For this reason, they are referred to as quasi-coordinates and

v and w are referred to as quasi-velocities.
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Local axes for Control Vane 1-4 are obtained from xyz:

1. Rotation a; about z to the axes x;y;z;
r__rr_y»Jr

2. Rotation B; about x; to the axes x;'y;"z;

3. Rotation §; about y;" to the local axes 1;y;k;
fori = 1,2,3,4.

For the square solar sail, a; = 225° a, = 45°, a3 = 315° a, = 135°.
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EQUATIONS OF MOTION

Equations of motion of flexible solar sail can be obtained by means of
the Lagrange’s equations of motion in quasi-coordinates.

Force Eauations | (55) LoPE 005 g

dt \ Ov ov OoR

g[?;:teig;s: d aL ~ a’C ~ BL { g T | 8’5
3 onlnar |G (aw) T T T E) 5 = M
Faatons govening | (%) _k ARy

3 nonlinear PDEs 8t 8u 811 8u

where £ = T — V.is the Lagrangian
\

Kinetic energy Potential energy
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The elastic displacement

u=[0 0 w]"

1s discretized by the Finite Elements
Method (FEM).

2n? triangular elements.

2n beam elements.

(n + 1) nodes.
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Potential energy can be written in the quadratic form:
V=V,+V,=3A"KA

where K 1s the global stiffness matrix and

&
T l' T
A = [R 0 q - } Vector of nodal displacements

1s the global displacement vector.
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Kinetic energy can be written in the quadratic form:

T=IVIMV

9
where M 1s the global mass matrix and

T
T L
V — 'V Y, S - } Vector of nodal velocities, s = q

1s the global velocity vector.
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Kinetic energy can be written in the quadratic form:

T=43VIMV
where M 1s the global mass matrix and
4
V . VT W i1 S?} Vector of nodal velocities, s = q

1s the global velocity vector.

Both K and M are (n? + 4n + 6) X (n® + 4n + 6).
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The solar radiation pressure over the ith finite element 1s then

Solar radiation flux
T 2
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Solar radiation flux
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We assume that the sail film 1s perfect reflector.

The solar radiation pressure over the ith finite element 1s then

Solar radiation flux Unit vector along position
. T SO RO 2, t/2 vector from O to a point in ith
f(z) =2 [R()] {R ), ﬁ(z)} ﬁ(z) finite element

(

Unit normal vector to
ith element

Speed of light — &

The solar radiation force over the control vanes are

C Cc

. So [ Ba 1% o rnve  ou |
£ = 9 0[ 0.] 2 [R@-ﬁ(@)fﬁg@), i=1,23,4
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The total virtual work 1s

W = 6W,, + Wy, + W, + W, = FT6R* + M" 00" + Q" iq
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where
Ba(t)
A1) Bult)
(it )= [ V() ] ,u(t) = 5, (1)
sl




Bl sacramenTo state EQUATIONS OF MOTION

The equations of motion can be cast in the state-space form

x(t) = f[x(t), u(t)]

where
pa(t)

(it )= [ éég ] ,u(t) = ?f((t)) < Control vane angles
54(0)
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EQUATIONS OF MOTION

The system described by the state-space equation is highly nonlinear

due to
* rigid body motion
e solar radiation

* gravitational forces
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The system is high dimensional since it includes 2(n? + 4n + 6) first-

order equations.

Due to the nature of FEM, a large n must be used for sufficiently

accurate representation of the system.
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The system is also underactuated because the number of control inputs

1s many times smaller than the number of degrees of freedom.
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The perturbation solution separates the equation into the zero-order

equation
x(t) = £x(t), a(?)
for the desired nominal dynamics and the first-order equation

x(t) = A[x(t), a(t)] x(t) + Bx(t), u(t)] a(t)

for the small p mrbati% the nominal dynamics.

Coefticient matrices, both functions of X(t) and u(t)
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The zero-order equation is highly nonlinear and high dimensional.

Its inverse dynamics is used to compute an open-loop control u(t) to

achieve a desired zero-order state X(t).

The first-order equation 1s linear, but as high dimensional as the original

equation.

We note that the zero-order state X(t) and control input u(t) enter into

the first-order equation as inputs.
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PERTURBATION SOLUTION

As a result, the first-order equation 1s time-invariant if X and U are

constant.
The first-order equation is time-varying if X and u are time-dependent.
The first-order equation is used to assess stability about the maneuver.

It can also be used to design feedback control to attenuate perturbations.
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The problems with high-dimensionality and underactuation are obviated

by a model-reduction approach in which

where U, 1s the matrix of k vibration modes and
[ &1 | |
&a : Up.

| € | T



Bl SACRAMENTO STATE NUMERICAL APPLICATION

Numerical Data

Length, L = 100 m Boom length, L, = 1004/2 m

Membrane thickness, t,, = 2.5 um Membrane density, p,, = 1660 kg/m?

Boom wall thickness, ¢, = 0.1 mm Boom Radius, 7, = 3.5 cm

Boom density, p, = 1660 kg/m* Boom Young’s Modulus, £}, = 68.95 GPa
Payload mass, M, = 20 kg Payload position, r, = [0 0 — 0.1]" m
Control panel length, [ = 5 m Control panel mass m,. = 0.3124 kg
Damping factor ¢ = 0.005 Tension, 7' = 0.0172 N/m

Solar Radiation flux, S; = 1368 N/m? | Sun to Earth Distance, Ry = 1.496 x 10! m
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First 4 nonzero eigenfrequencies vs. n
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Shapes of first 8 vibration modes for n = 14 (continued)
I1th Mode at @, =0.144522 rad/s 12th Mode at m,=0.164341 rad/s
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NUMERICAL APPLICATION

Solarcraft in a circular orbit around the Sunat R = Ry = 1 AU

v = R() = constant

Constant turn rate
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Convergence of the elastic displacements at the points a and b

4 6 8 _1.0 _____ T i -0.92 4 6 8 ) 0 1 3 _____
-145F == ' gl
" 094 pm———- -
-1.46 o [ l’_
P o i /
v [ /
-1.47 / =0.96 |- /
/’ [ I’
- / -
148 K 098f /7
-1.49 i T
/ -1.00F ¢
-1.50 / L 7
7/ i II
7 [
-151F ¢ -1.02 4
é 4




B SR T NUMERICAL APPLICATION

: . al \ \ 5 b3 1
d n=4 N\
[ \

Beam Element  Membrane Element Node Number
Number Number
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Elastic shape for n = 14 during the circular orbit

-05

w(x,y) [m] %o
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SACRAMENTO STATE

Redefine the Possible

Equilibrium Values and Eigenvalues of A for the circular orbit at 1 AU

NUMERICAL APPLICATION

n==~06 n=10 =14
() 1.767 x 10~ rad/s 1.767 x 10~ rad/s 1.767 x 10~ rad/s
ny —1.4668 m —1.4479 m —1.4444 m
wy, —0.9380 m —0.9233 m —0.9209 m
#of \’s | 132 292 516
A_4 0 0 0
5.6 + 1.438 x 10~° + 1.416 x 10~° + 1.355 x 10~°
A7.8 +41.767 x 10~ +41.766 x 10~ +41.769 x 10~
A9.10 +42.421 x 10~° +42.388 x 10~ +i2.685 x 10~
A11.12 +0.001148 +0.001112 +0.001101
A13.14 —0.000332 £ 70.078881 | —0.000332 £ 20.078351 | —0.000332 + ¢:0.078170
A5.16 —0.000469 =+ 70.093866 | —0.000463 4 20.092554 [ —0.000461 + 20.092144
A17.18 —0.000943 + 70.133046 | —0.000910 4 20.129813 [ —0.000902 + 20.128940
A19.20 —0.001199 +£ 0.150027 | —0.001148 % 20.145763 | —0.001133 £ ¢0.144508
A21.92 —0.001212 £ 70.150838 | —0.001159 4 20.146498 | —0.001145 +:0.145234
A23 94 —0.001450 + 70.164970 | —0.001385 4 20.160137 [ —0.001365 + 70.158598
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SACRAMENTO STATE

Redefine the Possible

Equilibrium Values and Eigenvalues of A for the circular orbit at 1 AU

NUMERICAL APPLICATION

A25 .26

—0.002715 £ 20.225751

—0.002405 =+ 20.210986

—0.002320 <+ 20.206787

/\27“28

—0.003044 + :0.239051

—0.002731 £ 0.224812

—0.002634 + ¢0.220319

/\‘29.130

—0.003045 +£ ¢0.239097

—0.002733 + #0.224893

—0.002636 + #0.220414

A31.32

—0.003383 £+ ¢0.251986

—0.003087 £+ 70.239036

—0.002980 + ¢0.234326

A33.34

—0.004655 % 20.295580

—0.003896 =+ :0.268537

—0.003689 + 70.260732

A35.36

—0.004670 % 20.296069

—0.003957 £ 0.270620

—0.003765 £ 20.263389

A37.38

—0.004759 + 20.298872

—0.004083 + :0.274897

—0.003882 + :0.267456

A39.40

—0.004801 + 0.300184

—0.004094 =+ :0.275274

—0.003890 +£ #0.267715

/\41.42

—0.007565 £ 70.376808

—0.005233 £+ 70.311208

—0.004876 +£ ¢0.299754

A43.44

—0.007847 £ 10.383764

—0.005298 £+ 40.313130

—0.004891 +40.300194

)\45.4(5

—0.008280 + 70.394194

—0.005363 £ 70.315035

—0.004985 +:0.303071

/\47.48

—0.009178 + 70.415023

—0.005558 % 20.320716

—0.005214 +£ 20.309937

/\49.:'3(]

—0.009414 + 20.420309

—0.006960 + 70.358878

—0.006383 £ 70.342945

A51 .52

—0.009545 + 20.423216

—0.007144 + 70.363611

—0.006547 £ :0.347303

/\53.54

—0.009557 £ ¢0.423487

—0.007166 £ 0.364171

—0.006559 + 0.347639

A55.56

—0.009557 £ i0.423487

—0.007224 £ :0.365625

—0.006633 +£ ¢0.349576

)\57.58

—0.009557 £ i0.423487

—0.008991 + 70.407885

—0.008106 + 70.386430




& SACRAMENTO STATE

Redefine the Possible

Equilibrium Values and Eigenvalues of A forn = 14

NUMERICAL APPLICATION

0.25R, 0.5R, 0.75R, 1.25R,
Q 9.615 x 10~ rad/s 4.999 x 10~ rad/s 3.899 x 10~ " rad/s 2.5284 x 10~ rad/s
W —4.9852 m —5.7761 m —6.5373 m —5.1013 m
wy —2.8067 m —3.6829 m —4.0839 m —2.4573 m
M—sa | O 0 0 0
5.6 + 7.286 x 1073 +2.070 x 107 +2.960 x 10~7 +4.370 x 107
A7 8 +i9.614 x 10~7 +44.997 x 107 +43.899 x 10~7 +42.529 x 10~°
Mo1o | +i1.243 x 10~° +48.798 x 10~ +47.670 x 10~ +i6.161 x 107
Mi112 | £0.001252 +0.004405 +0.007057 +0.010065
A3.14 | —0.000332 +£40.078184 | —0.000332 +40.078184 | —0.000332 + 0.078184 [ —0.000332 £ i0.078184
Ais.16 | —0.000461 +40.092155 | —0.000461 + 70.092155 | —0.000461 + 0.092155 | —0.000461 =+ i0.092155
Ai71s | —0.000002 +i0.128051 | —0.000902 + 70.128051 | —0.000902 + 70.128951 | —0.000902 + 70.128951
Moo | —0.001133 +£40.144518 | —0.001133 +40.144514 | —0.001133 +40.144510 | —0.001133 £ 0.144516
o199 | —0.001145 +£40.145244 | —0.001145 +40.145244 | —0.001145 + 70.145244 | —0.001145 + 0.145244
Aogog | —0.001365 +i0.158607 | —0.001365 + i0.158607 | —0.001365 %+ i0.158607 | —0.001365 + i0.158607
Aosos | —0.002320 £ i0.206795 | —0.002320 £ 0.206795 | —0.002320 £ i0.206795 | —0.002320 + 0.206795
Aoz og | —0.002634 £ i0.220326 | —0.002634 + i0.220326 | —0.002634 + i0.220327 | —0.002634 + i0.220333
oo g0 | —0.002636 +i0.220421 | —0.002636 + i0.220421 | —0.002636 + i0.220421 | —0.002636 + :0.220421
A3132 | —0.002980 =+ 0.234332 | —0.002980 + i0.234332 | —0.002980 + i0.234332 | —0.002980 =+ 0.234332
A33.34 | —0.003689 +i0.260738 | —0.003689 + i0.260738 | —0.003689 + i0.260738 | —0.003689 + i0.260738
3536 | —0.003765 +i0.263395 | —0.003765 + i0.263395 | —0.003765 + i0.263395 | —0.003765 + i0.263395




O NUMERICAL APPLICATION

Elastic shapes forn = 14

w(x,y) [m] j
-50

0

| 4

-4
-50

-2
we) [m) ) Q w(xy) [m]



§\ SACRAMENTO STATE

Redefine the Possible

NUMERICAL APPLICATION

Equilibrium Values and Eigenvalues of 4, forn = 14

k=4 k = 8 (Closed-Loop) =1 k=12
Q 1.76T x 107" rad/s 1.767 x 10~ rad/s 1.767 x 10~ rad/s 1.767 x 10~ " rad/s
W, —1.4393 m —1.4393 m —1.4393 m —1.4393 m
wy, —0.9493 m —0.9493 m —0.9493 m —0.9493 m
A—gq4 |0 0 0 0
5.6 + 8.145 x 10~° 3.31 x 107° £¢0.000029 | + 1.451 x 10" +1.451 X 10~
A78 +41.767 x 10~ +41. 767 x 107 +i1.767 x 10~° +41.767 x 10~
Ao 10 +i3.096 x 10~° —0.076316 £+ 70.076471 +42.432 x 10~ +42.432 x 10~7
At1.12 | £0.001171 —0.001431 £+ ¢0.001351 +0.001171 +0.001171
A3.14 | —0.000461 +70.092155 | —0.000461 £ 70.092155 —0.000461 +40.092144 | —0.000461 £ 70.092144
As.16 | —0.000902 £ 40.128951 | —0.000902 £ 70.128951 —0.000902 £ i0.128937 | —0.000902 + i0.128937
A17.18 | —0.001106 % 20.142740 [ —0.001106 4 70.142740 —0.001105 +40.142725 | —0.001105 =+ 70.142716
A1o.20 | —0.001133 +40.144518 | —0.001251 £ 70.144029 —0.001133 +i0.144506 | —0.001133 + i0.144506
A2199 | —0.001372 £ 20.159001 | —0.001372 + 20.159001 —0.001372 £+ 40.158991 | —0.001372 + 20.158991
Aoz og4 | —0.002320 % 70.206795 | —0.002320 £ :0.206795 —0.002320 + i0.206785 | —0.002320 =+ 20.206785
Aos 96 | —0.002626 £+ 70.219981 | —0.002627 + 20.219961 —0.002618 +70.219630 | —0.002617 £+ 20.219613
Ao7og | —0.000721 +41281.120 | —0.000721 £+ 21281.120 —0.002634 £ :0.220317 | —0.002634 + 20.220317
A20.30 —0.002980 =+ i0.234325 | —0.002980 = 70.234325
A31,32 —0.000729 £+ 71283.280 | —0.003765 + i0.263390
A33.34 —0.003836 + 70.265872
A35,36 —0.000776 +i1291.120
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SACRAMENTO STATE

Redefine the Possible

NUMERICAL APPLICATION

Equilibrium values for n = 14 at a circular orbit at the L1 libration

point (f; = B, = B3 =4 =0, 01 = 6, = 03 = 84 = 9)

0 = O rad 0 = m/6 rad 0 = m/4 rad 0 =m/3 rad
R 1.38144 x 10" m | 1.38187 x 101 m | 1.38224 x 10" m | 1.38252 x 10" m
Ro— R | 1.14555 x 10" m | 1.14126 x 10" m | 1.13763 x 10'° m | 1.13484 x 10"’ m
W, —1.6924 m —1.6977 m —1.7022 m —1.7056 m
wy, —1.0791 m —1.0806 m —1.0819 m —1.0829 m
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Redefine the Possible

NUMERICAL APPLICATION

Equilibrium values for n = 14 at a circular orbit at the L1 libration

point (f; = B, = B3 =4 =0, 01 = 6, = 03 = 84 = 9)

0 = 0rad

0 = m/6 rad 6 = m/4 rad 0 =m/3 rad
R 1.38144 x 10" m | 1.38187 x 101 m | 1.38224 x 10" m | 1.38252 x 10" m
Ro— R | 1.14555 x 10" m | 1.14126 x 10" m | 1.13763 x 10" m | 1.13484 x 10'"¥ m
W, —1.6924 m —1.6977 m —1.7022 m —1.7056 m
wy, —1.0791 m —1.0806 m —1.0819 m —1.0829 m

For a conventional spacecraft R = 1.48118 x 10! m and

R—R, = 148242 x 109 m.
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This presents a comprehensive mathematical model for the dynamics of
a solarcraft, accounting for both rigid body and elastic motions and their

Interactions.

Nonlinearity of the governing equation 1s dealt with a perturbation
solution that separates the equation into zero-order and first-order

equations.

The zero-order equation 1s used to design an open-loop control for a

desired maneuver.
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The first-order equation is used to assess the stability about the desired

maneuver and to design feedback control to alleviate perturbations.

High dimensionality and underactuation are dealt with a model

reduction approach.

In numerical application, circular orbits around the Sun are considered.
The zero-order equation 1s used to determine the turn rate and elastic

deformation.
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Circular orbit at the sub-L1 libration point is also considered.

The first-order equation is used to assess the stability about the orbits.
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Circular orbit at the sub-L1 libration point is also considered.
The first-order equation is used to assess the stability about the orbits.

Future research will focus on introduction of more effective control

inputs, and control design.



