A Reduced-Order Model for the Dynamics of a Flexible Solar Sail

Dr. Ilhan Tuzcu
Department of Mechanical Engineering
California State University, Sacramento

THE $6^{\text {TH }}$ INTERNATIONAL SYMPOSIUM ON SPACE SAILING
JUNE 5-9, 2023
City Tech, CUNY, New York, USA

INTRODUCTION

This research aims to derive a comprehensive mathematical model of a flexible solar sail (or solarcraft).

INTRODUCTION

This research aims to derive a comprehensive mathematical model of a flexible solar sail (or solarcraft).
Such a model accounts for rigid body and elastic motions as well as their interactions.

INTRODUCTION

This research aims to derive a comprehensive mathematical model of a flexible solar sail (or solarcraft).
Such a model accounts for rigid body and elastic motions as well as their interactions.

Model can be used for various purposes including:

INTRODUCTION

This research aims to derive a comprehensive mathematical model of a flexible solar sail (or solarcraft).
Such a model accounts for rigid body and elastic motions as well as their interactions.

Model can be used for various purposes including:

- Predicting behavior of solarcraft

INTRODUCTION

This research aims to derive a comprehensive mathematical model of a flexible solar sail (or solarcraft).
Such a model accounts for rigid body and elastic motions as well as their interactions.

Model can be used for various purposes including:

- Predicting behavior of solarcraft
- computing necessary open-loop control inputs to steer the solarcraft to follow a desired maneuver

INTRODUCTION

This research aims to derive a comprehensive mathematical model of a flexible solar sail (or solarcraft).
Such a model accounts for rigid body and elastic motions as well as their interactions.

Model can be used for various purposes including:

- Predicting behavior of solarcraft
- computing necessary open-loop control inputs to steer the solarcraft to follow a desired maneuver
- designing a feedback control to stabilize the solarcraft about the desired maneuver

INTRODUCTION

Flexible solarcraft motion involves 3 fundamental disciplines:

INTRODUCTION

Dynamics

INTRODUCTION

INTRODUCTION

INTRODUCTION

INTRODUCTION

INTRODUCTION

INTRODUCTION

INTRODUCTION

INTRODUCTION

We consider a square solar sail.

INTRODUCTION

We consider a square solar sail.

INTRODUCTION

We consider a square solar sail.

We assume the sail film is connected to the booms continuously.

EQUATIONS OF MOTION

EQUATIONS OF MOTION

EQUATIONS OF MOTION

EQUATIONS OF MOTION

EQUATIONS OF MOTION

EQUATIONS OF MOTION

EQUATIONS OF MOTION

EQUATIONS OF MOTION

Body axes $x y z$ are obtained from the inertial axes $X Y Z$:

1. Rotation θ about Y to the axes $x_{1} y_{1} z_{1}$
2. Rotation ϕ about x_{1} to the axes $x_{2} y_{2} z_{2}$
3. Rotation ψ about z_{2} to the body axes $x y z$
ϕ, θ and ψ are the Euler angles.

EQUATIONS OF MOTION

The velocity of the origin o of the body axes $\mathbf{v}=\left[\begin{array}{lll}v_{x} & v_{y} & v_{z}\end{array}\right]^{T}$.

EQUATIONS OF MOTION

The velocity of the origin o of the body axes $\mathbf{v}=\left[\begin{array}{lll}v_{x} & v_{y} & v_{z}\end{array}\right]^{T}$.

The angular velocity of the body axes $\boldsymbol{\omega}=\left[\begin{array}{lll}\omega_{x} & \omega_{y} & \omega_{z}\end{array}\right]^{T}$.

EQUATIONS OF MOTION

The velocity of the origin o of the body axes $\mathbf{v}=\left[\begin{array}{lll}v_{x} & v_{y} & v_{z}\end{array}\right]^{T}$.

The angular velocity of the body axes $\boldsymbol{\omega}=\left[\begin{array}{lll}\omega_{x} & \omega_{y} & \omega_{z}\end{array}\right]^{T}$.
 components

EQUATIONS OF MOTION

The velocity of the origin o of the body axes $\mathbf{v}=\left[\begin{array}{lll}v_{x} & v_{y} & v_{z}\end{array}\right]^{T}$.

The angular velocity of the body axes $\boldsymbol{\omega}=\left[\begin{array}{lll}\omega_{x} & \omega_{y} & \omega_{z}\end{array}\right]^{T}$.

$$
\mathbf{v}=C(\phi, \theta, \psi) \dot{\mathbf{R}}
$$

In body axes components

EQUATIONS OF MOTION

The velocity of the origin o of the body axes $\mathbf{v}=\left[\begin{array}{lll}v_{x} & v_{y} & v_{z}\end{array}\right]^{T}$.

The angular velocity of the body axes $\boldsymbol{\omega}=\left[\begin{array}{lll}\omega_{x} & \omega_{y} & \omega_{z}\end{array}\right]^{T}$.
$\mathbf{v}=C(\phi, \theta, \psi) \dot{\mathbf{R}}^{\text {In inertial axes components }}$

In body axes components

EQUATIONS OF MOTION

The velocity of the origin o of the body axes $\mathbf{v}=\left[\begin{array}{lll}v_{x} & v_{y} & v_{z}\end{array}\right]^{T}$.

The angular velocity of the body axes $\boldsymbol{\omega}=\left[\begin{array}{lll}\omega_{x} & \omega_{y} & \omega_{z}\end{array}\right]^{T}$.

$$
\mathbf{v}=C(\phi, \theta, \psi) \dot{\mathbf{R}} \quad \rightarrow \quad \mathbf{R}=C^{T}(\phi, \theta, \psi) \mathbf{v} \text { inertial axes components }
$$

In body axes components

EQUATIONS OF MOTION

The velocity of the origin o of the body axes $\mathbf{v}=\left[\begin{array}{lll}v_{x} & v_{y} & v_{z}\end{array}\right]^{T}$.

The angular velocity of the body axes $\boldsymbol{\omega}=\left[\begin{array}{lll}\omega_{x} & \omega_{y} & \omega_{z}\end{array}\right]^{T}$.

$$
\begin{aligned}
& \mathbf{v}=C(\phi, \theta, \psi) \dot{\mathbf{R}} \rightarrow \quad \dot{\mathbf{R}}=C^{T}(\phi, \theta, \psi) \mathbf{v} \\
& \mathbf{\omega}=E(\phi, \psi) \dot{\boldsymbol{\theta}}
\end{aligned}
$$

EQUATIONS OF MOTION

The velocity of the origin o of the body axes $\mathbf{v}=\left[\begin{array}{lll}v_{x} & v_{y} & v_{z}\end{array}\right]^{T}$.

The angular velocity of the body axes $\boldsymbol{\omega}=\left[\begin{array}{lll}\omega_{x} & \omega_{y} & \omega_{z}\end{array}\right]^{T}$.

$$
\begin{array}{lll}
\mathbf{v}=C(\phi, \theta, \psi) \dot{\mathbf{R}} & \rightarrow & \dot{\mathbf{R}}=C^{T}(\phi, \theta, \psi) \mathbf{v} \\
\mathbf{\omega}=E(\phi, \psi) \dot{\boldsymbol{\theta}} & \rightarrow & \dot{\boldsymbol{\theta}}=E^{-1}(\phi, \psi) \boldsymbol{\omega}
\end{array}
$$

In body axes components

EQUATIONS OF MOTION

The velocity of the origin o of the body axes $\mathbf{v}=\left[\begin{array}{lll}v_{x} & v_{y} & v_{z}\end{array}\right]^{T}$.

The angular velocity of the body axes $\boldsymbol{\omega}=\left[\begin{array}{lll}\omega_{x} & \omega_{y} & \omega_{z}\end{array}\right]^{T}$.
$\mathbf{v}=C(\phi, \theta, \psi) \dot{\mathbf{R}} \quad \rightarrow \quad \dot{\mathbf{R}}=C^{T}(\phi, \theta, \psi) \mathbf{v}$
$\boldsymbol{\omega}=E(\phi, \psi) \dot{\boldsymbol{\theta}} \quad \rightarrow \quad \dot{\boldsymbol{\theta}}=E^{-1}(\phi, \psi) \boldsymbol{\omega}$
where $\boldsymbol{\theta}=\left[\begin{array}{lll}\phi & \theta & \psi\end{array}\right]^{T}$.

EQUATIONS OF MOTION

\mathbf{v} and $\boldsymbol{\omega}$ are given in body axes components.

EQUATIONS OF MOTION

\mathbf{v} and $\boldsymbol{\omega}$ are given in body axes components.
If we write $\mathbf{v}=\dot{\mathbf{R}}^{*}$ and $\boldsymbol{\omega}=\dot{\boldsymbol{\theta}}^{*}$

EQUATIONS OF MOTION

\mathbf{v} and $\boldsymbol{\omega}$ are given in body axes components.
If we write $\mathbf{v}=\dot{\mathbf{R}}^{*}$ and $\boldsymbol{\omega}=\dot{\boldsymbol{\theta}}^{*}$
then \mathbf{R}^{*} and $\boldsymbol{\theta}^{*}$ do not correspond to any physical coordinates.

EQUATIONS OF MOTION

\mathbf{v} and $\boldsymbol{\omega}$ are given in body axes components.
If we write $\mathbf{v}=\dot{\mathbf{R}}^{*}$ and $\boldsymbol{\omega}=\dot{\boldsymbol{\theta}}^{*} \longleftarrow \mathbf{R}^{*} \neq \mathbf{R}, \quad \boldsymbol{\theta}^{*} \neq \boldsymbol{\theta}$
then \mathbf{R}^{*} and $\boldsymbol{\theta}^{*}$ do not correspond to any physical coordinates.

EQUATIONS OF MOTION

\mathbf{v} and $\boldsymbol{\omega}$ are given in body axes components.
If we write $\mathbf{v}=\dot{\mathbf{R}}^{*}$ and $\boldsymbol{\omega}=\dot{\boldsymbol{\theta}}^{*} \longleftarrow \mathbf{R}^{*} \neq \mathbf{R}, \quad \boldsymbol{\theta}^{*} \neq \boldsymbol{\theta}$
then \mathbf{R}^{*} and $\boldsymbol{\theta}^{*}$ do not correspond to any physical coordinates.
For this reason, they are referred to as quasi-coordinates

EQUATIONS OF MOTION

\mathbf{v} and $\boldsymbol{\omega}$ are given in body axes components.
If we write $\mathbf{v}=\dot{\mathbf{R}}^{*}$ and $\boldsymbol{\omega}=\dot{\boldsymbol{\theta}}^{*} \longleftarrow \mathbf{R}^{*} \neq \mathbf{R}, \quad \boldsymbol{\theta}^{*} \neq \boldsymbol{\theta}$
then \mathbf{R}^{*} and $\boldsymbol{\theta}^{*}$ do not correspond to any physical coordinates.
For this reason, they are referred to as quasi-coordinates and
\mathbf{v} and $\boldsymbol{\omega}$ are referred to as quasi-velocities.

EQUATIONS OF MOTION

Local axes for Control Vane 1-4 are obtained from xyz:

1. Rotation α_{i} about z to the axes $x_{i}^{\prime} y_{i}^{\prime} z_{i}^{\prime}$
2. Rotation β_{i} about x_{i}^{\prime} to the axes $x_{i}^{\prime \prime} y_{i}^{\prime \prime} z_{i}^{\prime \prime}$
3. Rotation δ_{i} about $y_{i}^{\prime \prime}$ to the local axes $\eta_{i} \gamma_{i} \kappa_{i}$
for $i=1,2,3,4$.
For the square solar sail, $\alpha_{1}=225^{\circ}, \alpha_{2}=45^{\circ}, \alpha_{3}=315^{\circ}, \alpha_{4}=135^{\circ}$.

EQUATIONS OF MOTION

Equations of motion of flexible solar sail can be obtained by means of the Lagrange's equations of motion in quasi-coordinates.

EQUATIONS OF MOTION

Equations of motion of flexible solar sail can be obtained by means of the Lagrange's equations of motion in quasi-coordinates.

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \mathbf{v}}\right)+\tilde{\omega} \frac{\partial \mathcal{L}}{\partial \mathbf{v}}-C \frac{\partial \mathcal{L}}{\partial \mathbf{R}} & =\mathbf{F} \\
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \boldsymbol{\omega}}\right)+\tilde{v} \frac{\partial \mathcal{L}}{\partial \mathbf{v}}+\tilde{\omega} \frac{\partial \mathcal{L}}{\partial \boldsymbol{\omega}}-\left(E^{T}\right)^{-1} \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}} & =\mathbf{M} \\
\frac{\partial}{\partial t}\left(\frac{\partial \hat{\mathcal{L}}}{\partial \dot{\mathbf{u}}}\right)-\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{u}}+\frac{\partial \hat{\mathcal{R}}}{\partial \dot{\mathbf{u}}} & =\hat{\mathbf{U}}
\end{aligned}
$$

EQUATIONS OF MOTION

Equations of motion of flexible solar sail can be obtained by means of the Lagrange's equations of motion in quasi-coordinates.

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \mathbf{v}}\right)+\tilde{\omega} \frac{\partial \mathcal{L}}{\partial \mathbf{v}}-C \frac{\partial \mathcal{L}}{\partial \mathbf{R}} & =\mathbf{F} \\
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \boldsymbol{\omega}}\right)+\tilde{v} \frac{\partial \mathcal{L}}{\partial \mathbf{v}}+\tilde{\omega} \frac{\partial \mathcal{L}}{\partial \boldsymbol{\omega}}-\left(E^{T}\right)^{-1} \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}} & =\mathbf{M} \\
\frac{\partial}{\partial t}\left(\frac{\partial \hat{\mathcal{L}}}{\partial \dot{\mathbf{u}}}\right)-\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{u}}+\frac{\partial \hat{\mathcal{R}}}{\partial \dot{\mathbf{u}}} & =\hat{\mathbf{U}}
\end{aligned}
$$

where $\mathcal{L}=\mathcal{T}-\mathcal{V}$ is the Lagrangian

EQUATIONS OF MOTION

Equations of motion of flexible solar sail can be obtained by means of the Lagrange's equations of motion in quasi-coordinates.

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \mathbf{v}}\right)+\tilde{\omega} \frac{\partial \mathcal{L}}{\partial \mathbf{v}}-C \frac{\partial \mathcal{L}}{\partial \mathbf{R}} & =\mathbf{F} \\
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \boldsymbol{\omega}}\right)+\tilde{v} \frac{\partial \mathcal{L}}{\partial \mathbf{v}}+\tilde{\omega} \frac{\partial \mathcal{L}}{\partial \boldsymbol{\omega}}-\left(E^{T}\right)^{-1} \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}} & =\mathbf{M} \\
\frac{\partial}{\partial t}\left(\frac{\partial \hat{\mathcal{L}}}{\partial \dot{\mathbf{u}}}\right)-\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{u}}+\frac{\partial \hat{\mathcal{R}}}{\partial \dot{\mathbf{u}}} & =\hat{\mathbf{U}}
\end{aligned}
$$

where $\mathcal{L}=\mathcal{T}-\mathcal{V}$ is the Lagrangian

EQUATIONS OF MOTION

Equations of motion of flexible solar sail can be obtained by means of the Lagrange's equations of motion in quasi-coordinates.

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \mathbf{v}}\right)+\tilde{\omega} \frac{\partial \mathcal{L}}{\partial \mathbf{v}}-C \frac{\partial \mathcal{L}}{\partial \mathbf{R}} & =\mathbf{F} \\
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \boldsymbol{\omega}}\right)+\tilde{v} \frac{\partial \mathcal{L}}{\partial \mathbf{v}}+\tilde{\omega} \frac{\partial \mathcal{L}}{\partial \boldsymbol{\omega}}-\left(E^{T}\right)^{-1} \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}} & =\mathbf{M} \\
\frac{\partial}{\partial t}\left(\frac{\partial \hat{\mathcal{L}}}{\partial \dot{\mathbf{u}}}\right)-\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{u}}+\frac{\partial \hat{\mathcal{R}}}{\partial \dot{\mathbf{u}}} & =\hat{\mathbf{U}}
\end{aligned}
$$

where $\mathcal{L}=\mathcal{T}-\mathcal{V}$ is the Lagrangian
Kinetic energy Potential energy

EQUATIONS OF MOTION

Equations of motion of flexible solar sail can be obtained by means of the Lagrange's equations of motion in quasi-coordinates.

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \mathbf{v}}\right)+\tilde{\omega} \frac{\partial \mathcal{L}}{\partial \mathbf{v}}-C \frac{\partial \mathcal{L}}{\partial \mathbf{R}} & =\mathbf{F} \\
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \boldsymbol{\omega}}\right)+\tilde{v} \frac{\partial \mathcal{L}}{\partial \mathbf{v}}+\tilde{\omega} \frac{\partial \mathcal{L}}{\partial \boldsymbol{\omega}}-\left(E^{T}\right)^{-1} \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}} & =\mathbf{M} \\
\frac{\partial}{\partial t}\left(\frac{\partial \hat{\mathcal{L}}}{\partial \dot{\mathbf{u}}}\right)-\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{u}}+\frac{\partial \hat{\mathcal{R}}}{\partial \dot{\mathbf{u}}} & =\hat{\mathbf{U}}
\end{aligned}
$$

where $\mathcal{L}=\mathcal{T}-\mathcal{V}$ is the Lagrangian
Kinetic energy Potential energy

EQUATIONS OF MOTION

Equations of motion of flexible solar sail can be obtained by means of the Lagrange's equations of motion in quasi-coordinates.

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \mathbf{v}}\right)+\tilde{\omega} \frac{\partial \mathcal{L}}{\partial \mathbf{v}}-C \frac{\partial \mathcal{L}}{\partial \mathbf{R}} & =\mathbf{F} \\
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \boldsymbol{\omega}}\right)+\tilde{v} \frac{\partial \mathcal{L}}{\partial \mathbf{v}}+\tilde{\omega} \frac{\partial \mathcal{L}}{\partial \boldsymbol{\omega}}-\left(E^{T}\right)^{-1} \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}} & =\mathbf{M}_{\text {Foneralized }}^{\text {Forces }} \\
\frac{\partial}{\partial t}\left(\frac{\partial \hat{\mathcal{L}}}{\partial \dot{\mathbf{u}}}\right)-\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{u}}+\frac{\partial \hat{\mathcal{R}}}{\partial \dot{\mathbf{u}}} & =\hat{\mathbf{U}}
\end{aligned}
$$

where $\mathcal{L}=\mathcal{T}-\mathcal{V}$ is the Lagrangian
Kinetic energy Potential energy

EQUATIONS OF MOTION

Equations of motion of flexible solar sail can be obtained by means of the Lagrange's equations of motion in quasi-coordinates.
where $\mathcal{L}=\mathfrak{T}-\mathcal{V}$ is the Lagrangian
Kinetic energy Potential energy

EQUATIONS OF MOTION

Equations of motion of flexible solar sail can be obtained by means of the Lagrange's equations of motion in quasi-coordinates.
$\begin{aligned} \begin{array}{l}\text { Force Equations: } \\ 3 \text { nonlinear ODEs }\end{array} & \begin{array}{r}\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \mathbf{v}}\right)+\tilde{\omega} \frac{\partial \mathcal{L}}{\partial \mathbf{v}}-C \frac{\partial \mathcal{L}}{\partial \mathbf{R}} \\ \frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \boldsymbol{\omega}}\right)+\tilde{v} \frac{\partial \mathcal{L}}{\partial \mathbf{v}}+\tilde{\omega} \frac{\partial \mathcal{L}}{\partial \boldsymbol{\omega}}-\left(E^{T}\right)^{-1} \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}}\end{array} \\ & =\mathbf{M} \left\lvert\, \begin{array}{l}\text { Generalized } \\ \text { Forces }\end{array}\right. \\ \frac{\partial}{\partial t}\left(\frac{\partial \hat{\mathcal{L}}}{\partial \dot{\mathbf{u}}}\right)-\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{u}}+\frac{\partial \hat{\mathcal{R}}}{\partial \dot{\mathbf{u}}} & =\hat{\mathbf{U}}\end{aligned}$
where $\mathcal{L}=\mathcal{T}-\mathcal{V}$ is the Lagrangian
Kinetic energy Potential energy

EQUATIONS OF MOTION

Equations of motion of flexible solar sail can be obtained by means of the Lagrange's equations of motion in quasi-coordinates.

Generalized Forces
where $\mathcal{L}=\mathcal{T}-\mathcal{V}$ is the Lagrangian
Kinetic energy Potential energy

EQUATIONS OF MOTION

Equations of motion of flexible solar sail can be obtained by means of the Lagrange's equations of motion in quasi-coordinates.

where $\mathcal{L}=\mathcal{T}-\mathcal{V}$ is the Lagrangian
Kinetic energy Potential energy

EQUATIONS OF MOTION

Equations of motion of flexible solar sail can be obtained by means of the Lagrange's equations of motion in quasi-coordinates.

	Equations: onlinear ODEs	$\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \mathbf{v}}\right)+\tilde{\omega} \frac{\partial \mathcal{L}}{\partial \mathbf{v}}-C \frac{\partial \mathcal{L}}{\partial \mathbf{R}}=$	F
Moment Equations: 3 nonlinear ODEs	$\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \boldsymbol{\omega}}\right)$	$\tilde{v} \frac{\partial \mathcal{L}}{\partial \mathbf{v}}+\tilde{\omega} \frac{\partial \mathcal{L}}{\partial \boldsymbol{\omega}}-\left(E^{T}\right)^{-1} \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}}=$	M
		$\frac{\partial}{\partial t}\left(\frac{\partial \hat{\mathcal{L}}}{\partial \dot{\mathbf{u}}}\right)-\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{u}}+\frac{\partial \hat{\mathcal{R}}}{\partial \dot{\mathbf{u}}}=$	U

Generalized Forces
where $\mathcal{L}=\mathcal{T}-\mathcal{V}$ is the Lagrangian
Kinetic energy Potential energy

EQUATIONS OF MOTION

Equations of motion of flexible solar sail can be obtained by means of the Lagrange's equations of motion in quasi-coordinates.

	ce Equations: nlinear ODEs	$\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \mathbf{v}}\right)+\tilde{\omega} \frac{\partial \mathcal{L}}{\partial \mathbf{v}}-C \frac{\partial \mathcal{L}}{\partial \mathbf{R}}=$	F
Moment Equations: 3 nonlinear ODEs	$\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \boldsymbol{\omega}}\right)+\tilde{v}$	$\tilde{v} \frac{\partial \mathcal{L}}{\partial \mathbf{v}}+\tilde{\omega} \frac{\partial \mathcal{L}}{\partial \boldsymbol{\omega}}-\left(E^{T}\right)^{-1} \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}}=$	M
	Equations governing elastic displacement: 3 nonlinear PDEs	$\mathrm{g}: \frac{\partial}{\partial t}\left(\frac{\partial \hat{\mathcal{L}}}{\partial \dot{\mathbf{u}}}\right)-\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{u}}+\frac{\partial \hat{\mathcal{R}}}{\partial \dot{\mathbf{u}}}=$	U

Generalized Forces
where $\mathcal{L}=\mathcal{T}-\mathcal{V}$ is the Lagrangian
Kinetic energy

- Potential energy

EQUATIONS OF MOTION

The elastic displacement

$$
\mathbf{u}=\left[\begin{array}{lll}
0 & 0 & w
\end{array}\right]^{T}
$$

EQUATIONS OF MOTION

The elastic displacement

$$
\mathbf{u}=\left[\begin{array}{lll}
0 & 0 & w
\end{array}\right]^{T}
$$

is discretized by the Finite Elements
Method (FEM).

EQUATIONS OF MOTION

The elastic displacement

$$
\mathbf{u}=\left[\begin{array}{lll}
0 & 0 & w
\end{array}\right]^{T}
$$

is discretized by the Finite Elements
Method (FEM).

EQUATIONS OF MOTION

The elastic displacement

$$
\mathbf{u}=\left[\begin{array}{lll}
0 & 0 & w
\end{array}\right]^{T}
$$

is discretized by the Finite Elements
Method (FEM).
$2 n^{2}$ triangular elements.

EQUATIONS OF MOTION

The elastic displacement

$$
\mathbf{u}=\left[\begin{array}{lll}
0 & 0 & w
\end{array}\right]^{T}
$$

is discretized by the Finite Elements
Method (FEM).
$2 n^{2}$ triangular elements.
$2 n$ beam elements.

EQUATIONS OF MOTION

The elastic displacement

$$
\mathbf{u}=\left[\begin{array}{lll}
0 & 0 & w
\end{array}\right]^{T}
$$

is discretized by the Finite Elements Method (FEM).
$2 n^{2}$ triangular elements.
$2 n$ beam elements.
$(n+1)^{2}$ nodes .

EQUATIONS OF MOTION

Potential energy can be written in the quadratic form:

$$
\mathcal{V}=\mathcal{V}_{m}+\mathcal{V}_{b}=\frac{1}{2} \Delta^{T} K \Delta
$$

EQUATIONS OF MOTION

Potential energy can be written in the quadratic form:
$\mathcal{V}=\mathcal{V}_{m}+\mathcal{V}_{b}=\frac{1}{2} \boldsymbol{\Delta}^{T} K \boldsymbol{\Delta}$
where K is the global stiffness matrix and

EQUATIONS OF MOTION

Potential energy can be written in the quadratic form:

$$
\mathcal{V}=\mathcal{V}_{m}+\mathcal{V}_{b}=\frac{1}{2} \Delta^{T} K \Delta
$$

where K is the global stiffness matrix and
$\boldsymbol{\Delta}=\left[\begin{array}{lll}\mathbf{R}^{T} & \boldsymbol{\theta}^{T} & \mathbf{q}^{T}\end{array}\right]^{T}$
is the global displacement vector.

EQUATIONS OF MOTION

Potential energy can be written in the quadratic form:
$\mathcal{V}=\mathcal{V}_{m}+\mathcal{V}_{b}=\frac{1}{2} \boldsymbol{\Delta}^{T} K \boldsymbol{\Delta}$
where K is the global stiffness matrix and
$\boldsymbol{\Delta}=\left[\begin{array}{lll}\mathbf{R}^{T} & \boldsymbol{\theta}^{T} & \mathbf{q}_{*}^{T}\end{array}\right]^{T} \quad$ Vector of nodal displacements
is the global displacement vector.

EQUATIONS OF MOTION

Kinetic energy can be written in the quadratic form:

$$
\mathfrak{T}=\frac{1}{2} \mathbf{V}^{T} M \mathbf{V}
$$

EQUATIONS OF MOTION

Kinetic energy can be written in the quadratic form: $\mathcal{T}=\frac{1}{2} \mathbf{V}^{T} M \mathbf{V}$
where M is the global mass matrix and

EQUATIONS OF MOTION

Kinetic energy can be written in the quadratic form:

$$
\mathfrak{T}=\frac{1}{2} \mathbf{V}^{T} M \mathbf{V}
$$

where M is the global mass matrix and
$\mathbf{V}=\left[\begin{array}{lll}\mathbf{v}^{T} & \boldsymbol{\omega}^{T} & \mathbf{s}^{T}\end{array}\right]^{T}$
is the global velocity vector.

EQUATIONS OF MOTION

Kinetic energy can be written in the quadratic form:

$$
\mathfrak{T}=\frac{1}{2} \mathbf{V}^{T} M \mathbf{V}
$$

where M is the global mass matrix and
$\mathbf{V}=\left[\begin{array}{lll}\mathbf{v}^{T} & \boldsymbol{\omega}^{T} & \mathbf{S}^{T}\end{array}\right]^{T} \quad$ Vector of nodal velocities, $\mathbf{s}=\dot{\mathbf{q}}$
is the global velocity vector.

EQUATIONS OF MOTION

Kinetic energy can be written in the quadratic form:

$$
\mathfrak{T}=\frac{1}{2} \mathbf{V}^{T} M \mathbf{V}
$$

where M is the global mass matrix and
$\mathbf{V}=\left[\begin{array}{lll}\mathbf{v}^{T} & \boldsymbol{\omega}^{T} & \mathbf{s}\end{array}\right]^{T} \quad$ Vector of nodal velocities, $\mathbf{s}=\dot{\mathbf{q}}$
is the global velocity vector.
Both K and M are $\left(n^{2}+4 n+6\right) \times\left(n^{2}+4 n+6\right)$.

EQUATIONS OF MOTION

We assume that the sail film is perfect reflector.

EQUATIONS OF MOTION

We assume that the sail film is perfect reflector.
The solar radiation pressure over the i th finite element is then

EQUATIONS OF MOTION

We assume that the sail film is perfect reflector.
The solar radiation pressure over the i th finite element is then

$$
\mathbf{f}^{(i)}=2 \frac{S_{0}}{c}\left[\frac{R_{0}}{R^{(i)}}\right]^{2}\left[\hat{\mathbf{R}}^{(i)} \cdot \hat{\mathbf{n}}^{(i)}\right]^{2} \hat{\mathbf{n}}^{(i)}
$$

EQUATIONS OF MOTION

We assume that the sail film is perfect reflector.
The solar radiation pressure over the i th finite element is then Solar radiation flux

$$
\mathbf{f}^{(i)}=2 \frac{S_{0}}{c}\left[\frac{R_{0}}{R^{(i)}}\right]^{2}\left[\hat{\mathbf{R}}^{(i)} \cdot \hat{\mathbf{n}}^{(i)}\right]^{2} \hat{\mathbf{n}}^{(i)}
$$

EQUATIONS OF MOTION

We assume that the sail film is perfect reflector.
The solar radiation pressure over the i th finite element is then Solar radiation flux

EQUATIONS OF MOTION

We assume that the sail film is perfect reflector.
The solar radiation pressure over the i th finite element is then

Solar radiation flux

$$
\mathbf{f}^{(i)}=2 \frac{S_{0}}{c}\left[\frac{R_{0}}{R^{(i)}}\right]^{2}\left[\hat{\mathbf{R}}^{(i)} \cdot \hat{\mathbf{n}}^{(i)}\right]^{2} \hat{\mathbf{n}}^{(i)}
$$

Unit vector along position vector from O to a point in i th finite element

EQUATIONS OF MOTION

We assume that the sail film is perfect reflector.
The solar radiation pressure over the i th finite element is then

Solar radiation flux
Speed of light $\mathbf{f}^{(i)}=2 \frac{S_{0}}{c}\left[\frac{R_{0}}{R^{(i)}}\right]^{2}\left[\hat{\mathbf{R}}^{〔 i)} \cdot \hat{\mathbf{n}}^{(i)}\right]^{2} \hat{\mathbf{n}}_{\substack{(i)}}^{\begin{array}{l}\text { vector from } O \text { to a point in } i \text { th } \\ \text { finite element }\end{array}} \begin{aligned} & \text { Unit normal vector to } \\ & \text { ith element }\end{aligned}$

EQUATIONS OF MOTION

We assume that the sail film is perfect reflector.
The solar radiation pressure over the i th finite element is then
Solar radiation flux
$\mathbf{f}^{(i)}=2 \frac{S_{0}}{c}\left[\frac{R_{0}}{R^{(i)}}\right]^{2}\left[\hat{\mathbf{R}}^{\zeta i)} \cdot \hat{\mathbf{n}}^{(i)}\right]^{2} \hat{\mathbf{n}}_{\leftarrow}^{(i)} \quad \begin{aligned} & \text { vector from } O \text { to a point in } i \text { th } \\ & \text { finite element }\end{aligned}$
Speed of light
$\begin{aligned} & \text { Unit normal vector to } \\ & \text { ith element }\end{aligned}$
The solar radiation force over the control vanes are

EQUATIONS OF MOTION

We assume that the sail film is perfect reflector.
The solar radiation pressure over the i th finite element is then
Solar radiation flux
$\underset{\text { of light }}{\mathbf{f}^{(i)}=2} \xrightarrow{S_{0}}\left[\frac{R_{0}}{R^{(i)}}\right]^{2}\left[\hat{\mathbf{R}}^{(i)} \cdot \hat{\mathbf{n}}^{(i)}\right]^{2} \hat{\mathbf{n}}^{(i)}$
Unit vector along position

Speed of light
The solar radiation force over the control vanes are

$$
\mathbf{f}_{c}^{(i)}=2 \frac{S_{0}}{c}\left[\frac{R_{0}}{R_{c}^{(i)}}\right]^{2} l^{2}\left[\hat{\mathbf{R}}_{c}^{(i)} \cdot \hat{\mathbf{n}}_{c}^{(i)}\right]^{2} \hat{\mathbf{n}}_{c}^{(i)}, \quad i=1,2,3,4
$$

EQUATIONS OF MOTION

The total virtual work is

$$
\delta W=\delta W_{m}+\delta W_{b}+\delta W_{c}+\delta W_{p}=\mathbf{F}^{T} \delta \mathbf{R}^{*}+\mathbf{M}^{T} \delta \boldsymbol{\theta}^{*}+\mathbf{Q}^{T} \delta \mathbf{q}
$$

EQUATIONS OF MOTION

The equations of motion can be cast in the state-space form

EQUATIONS OF MOTION

The equations of motion can be cast in the state-space form

$$
\dot{\mathbf{x}}(t)=\mathbf{f}[\mathbf{x}(t), \mathbf{u}(t)]
$$

EQUATIONS OF MOTION

The equations of motion can be cast in the state-space form
$\dot{\mathbf{x}}(t)=\mathbf{f}[\mathbf{x}(t), \mathbf{u}(t)]$
where
$\mathbf{x}(t)=\left[\begin{array}{c}\boldsymbol{\Delta}(t) \\ \mathbf{V}(t)\end{array}\right], \quad \mathbf{u}(t)=\left[\begin{array}{c}\beta_{1}(t) \\ \vdots \\ \beta_{4}(t) \\ \delta_{1}(t) \\ \vdots \\ \delta_{4}(t)\end{array}\right]$

EQUATIONS OF MOTION

The equations of motion can be cast in the state-space form
$\dot{\mathbf{x}}(t)=\mathbf{f}[\mathbf{x}(t), \mathbf{u}(t)]$
where
$\mathbf{x}(t)=\left[\begin{array}{c}\boldsymbol{\Delta}(t) \\ \mathbf{V}(t)\end{array}\right], \quad \mathbf{u}(t)=\left[\begin{array}{c}\beta_{1}(t) \\ \vdots \\ \beta_{4}(t) \\ \delta_{1}(t) \\ \vdots \\ \delta_{4}(t)\end{array}\right] \longleftarrow$ Control vane angles

EQUATIONS OF MOTION

The system described by the state-space equation is highly nonlinear due to

EQUATIONS OF MOTION

The system described by the state-space equation is highly nonlinear due to

- rigid body motion

EQUATIONS OF MOTION

The system described by the state-space equation is highly nonlinear due to

- rigid body motion
- solar radiation

EQUATIONS OF MOTION

The system described by the state-space equation is highly nonlinear due to

- rigid body motion
- solar radiation
- gravitational forces

EQUATIONS OF MOTION

The system is high dimensional since it includes $2\left(n^{2}+4 n+6\right)$ firstorder equations.

EQUATIONS OF MOTION

The system is high dimensional since it includes $2\left(n^{2}+4 n+6\right)$ firstorder equations.

Due to the nature of FEM, a large n must be used for sufficiently accurate representation of the system.

EQUATIONS OF MOTION

The system is also underactuated because the number of control inputs is many times smaller than the number of degrees of freedom.

PERTURBATION SOLUTION

The problem with the nonlinearity of the system can be obviated by a perturbation solution in which

PERTURBATION SOLUTION

The problem with the nonlinearity of the system can be obviated by a perturbation solution in which

$$
\mathbf{x}(t)=\overline{\mathbf{x}}(t)+\hat{\mathbf{x}}(t)
$$

$$
\mathbf{u}(t)=\overline{\mathbf{u}}(t)+\hat{\mathbf{u}}(t)
$$

PERTURBATION SOLUTION

The perturbation solution separates the equation into the zero-order equation

PERTURBATION SOLUTION

The perturbation solution separates the equation into the zero-order equation
$\dot{\overline{\mathbf{x}}}(t)=\mathbf{f}[\overline{\mathbf{x}}(t), \overline{\mathbf{u}}(t)]$
for the desired nominal dynamics

PERTURBATION SOLUTION

The perturbation solution separates the equation into the zero-order equation

$$
\dot{\overline{\mathbf{x}}}(t)=\mathbf{f}[\overline{\mathbf{x}}(t), \overline{\mathbf{u}}(t)]
$$

for the desired nominal dynamics and the first-order equation
$\dot{\hat{\mathbf{x}}}(t)=A[\overline{\mathbf{x}}(t), \overline{\mathbf{u}}(t)] \hat{\mathbf{x}}(t)+B[\overline{\mathbf{x}}(t), \overline{\mathbf{u}}(t)] \hat{\mathbf{u}}(t)$
for the small perturbation about the nominal dynamics.

PERTURBATION SOLUTION

The perturbation solution separates the equation into the zero-order equation
$\dot{\overline{\mathbf{x}}}(t)=\mathbf{f}[\overline{\mathbf{x}}(t), \overline{\mathbf{u}}(t)]$
for the desired nominal dynamics and the first-order equation
$\dot{\hat{\mathbf{x}}}(t)=A^{A}[\overline{\mathbf{x}}(t), \overline{\mathbf{u}}(t)] \hat{\mathbf{x}}(t)+B[\overline{\mathbf{x}}(t), \overline{\mathbf{u}}(t)] \hat{\mathbf{u}}(t)$
for the small perturbation about the nominal dynamics.

Coefficient matrices, both functions of $\overline{\mathbf{x}}(t)$ and $\overline{\mathbf{u}}(t)$

PERTURBATION SOLUTION

The zero-order equation is highly nonlinear and high dimensional.

PERTURBATION SOLUTION

The zero-order equation is highly nonlinear and high dimensional.
Its inverse dynamics is used to compute an open-loop control $\overline{\mathbf{u}}(t)$ to achieve a desired zero-order state $\overline{\mathbf{x}}(t)$.

PERTURBATION SOLUTION

The zero-order equation is highly nonlinear and high dimensional.
Its inverse dynamics is used to compute an open-loop control $\overline{\mathbf{u}}(t)$ to achieve a desired zero-order state $\overline{\mathbf{x}}(t)$.

The first-order equation is linear, but as high dimensional as the original equation.

PERTURBATION SOLUTION

The zero-order equation is highly nonlinear and high dimensional.
Its inverse dynamics is used to compute an open-loop control $\overline{\mathbf{u}}(t)$ to achieve a desired zero-order state $\overline{\mathbf{x}}(t)$.

The first-order equation is linear, but as high dimensional as the original equation.

We note that the zero-order state $\overline{\mathbf{x}}(t)$ and control input $\overline{\mathbf{u}}(t)$ enter into the first-order equation as inputs.

PERTURBATION SOLUTION

As a result, the first-order equation is time-invariant if $\overline{\mathbf{x}}$ and $\overline{\mathbf{u}}$ are constant.

PERTURBATION SOLUTION

As a result, the first-order equation is time-invariant if $\overline{\mathbf{x}}$ and $\overline{\mathbf{u}}$ are constant.

The first-order equation is time-varying if $\overline{\mathbf{x}}$ and $\overline{\mathbf{u}}$ are time-dependent.

PERTURBATION SOLUTION

As a result, the first-order equation is time-invariant if $\overline{\mathbf{x}}$ and $\overline{\mathbf{u}}$ are constant.

The first-order equation is time-varying if $\overline{\mathbf{x}}$ and $\overline{\mathbf{u}}$ are time-dependent.
The first-order equation is used to assess stability about the maneuver.

PERTURBATION SOLUTION

As a result, the first-order equation is time-invariant if $\overline{\mathbf{x}}$ and $\overline{\mathbf{u}}$ are constant.

The first-order equation is time-varying if $\overline{\mathbf{x}}$ and $\overline{\mathbf{u}}$ are time-dependent.
The first-order equation is used to assess stability about the maneuver.
It can also be used to design feedback control to attenuate perturbations.

MODEL REDUCTION

The problems with high-dimensionality and underactuation are obviated by a model-reduction approach in which

MODEL REDUCTION

The problems with high-dimensionality and underactuation are obviated by a model-reduction approach in which

$$
\mathbf{q}=U_{e} \boldsymbol{\xi}, \quad \dot{\mathbf{q}}=U_{e} \dot{\boldsymbol{\xi}} \Rightarrow \mathbf{s}=U_{e} \boldsymbol{\eta}
$$

MODEL REDUCTION

The problems with high-dimensionality and underactuation are obviated by a model-reduction approach in which

$$
\mathbf{q}=U_{e} \boldsymbol{\xi}, \quad \dot{\mathbf{q}}=U_{e} \dot{\boldsymbol{\xi}} \Rightarrow \mathbf{s}=U_{e} \boldsymbol{\eta}
$$

- Vector of nodal displacements

MODEL REDUCTION

The problems with high-dimensionality and underactuation are obviated by a model-reduction approach in which

$$
\mathbf{q}=U_{e} \boldsymbol{\xi}, \quad \dot{\mathbf{q}}=U_{e} \dot{\boldsymbol{\xi}} \Rightarrow \mathbf{s}=U_{e} \boldsymbol{\eta}
$$

where U_{e} is the matrix of k vibration modes and
$\boldsymbol{\xi}=\left[\begin{array}{c}\xi_{1} \\ \xi_{2} \\ \vdots \\ \xi_{k}\end{array}\right], \quad \boldsymbol{\eta}=\dot{\boldsymbol{\xi}}=\left[\begin{array}{c}\eta_{1} \\ \eta_{2} \\ \vdots \\ \eta_{k}\end{array}\right]$

NUMERICAL APPLICATION

Numerical Data

Length, $L=100 \mathrm{~m}$	Boom length, $L_{b}=100 \sqrt{2} \mathrm{~m}$
Membrane thickness, $t_{m}=2.5 \mu \mathrm{~m}$	Membrane density, $\rho_{m}=1660 \mathrm{~kg} / \mathrm{m}^{3}$
Boom wall thickness, $t_{b}=0.1 \mathrm{~mm}$	Boom Radius, $r_{b}=3.5 \mathrm{~cm}$
Boom density, $\rho_{b}=1660 \mathrm{~kg} / \mathrm{m}^{3}$	Boom Young's Modulus, $E_{b}=68.95 \mathrm{GPa}$
Payload mass, $M_{p}=20 \mathrm{~kg}$	Payload position, $\mathbf{r}_{p}=\left[\begin{array}{lll}0 & 0 & -0.1\end{array}\right]^{T} \mathrm{~m}$
Control panel length, $l=5 \mathrm{~m}$	Control panel mass $m_{c}=0.3124 \mathrm{~kg}$
Damping factor $\zeta=0.005$	Tension, $T=0.0172 \mathrm{~N} / \mathrm{m}$
Solar Radiation flux, $S_{0}=1368 \mathrm{~N} / \mathrm{m}^{2}$	Sun to Earth Distance, $R_{0}=1.496 \times 10^{11} \mathrm{~m}$

NUMERICAL APPLICATION

First 4 nonzero eigenfrequencies vs. n

NUMERICAL APPLICATION

Shapes of first 8 vibration modes for $n=14$

7 th Mode at $\omega_{7}=0.092156 \mathrm{rad} / \mathrm{s}$

8th Mode at $\omega_{8}=0.104405 \mathrm{rad} / \mathrm{s}$

9th Mode at $\omega_{9}=0.128955 \mathrm{rad} / \mathrm{s}$

10th Mode at $\omega_{10}=0.144522 \mathrm{rad} / \mathrm{s}$

NUMERICAL APPLICATION

Shapes of first 8 vibration modes for $n=14$ (continued)

11th Mode at $\omega_{11}=0.144522 \mathrm{rad} / \mathrm{s}$

12th Mode at $\omega_{12}=0.164341 \mathrm{rad} / \mathrm{s}$

14th Mode at $\omega_{14}=0.220341 \mathrm{rad} / \mathrm{s}$

NUMERICAL APPLICATION

Solarcraft in a circular orbit around the Sun at $R=R_{0}=1 \mathrm{AU}$

NUMERICAL APPLICATION

Solarcraft in a circular orbit around the Sun at $R=R_{0}=1 \mathrm{AU}$

NUMERICAL APPLICATION

Solarcraft in a circular orbit around the Sun at $R=R_{0}=1 \mathrm{AU}$

NUMERICAL APPLICATION

Convergence of the elastic displacements at the points a and b

NUMERICAL APPLICATION

NUMERICAL APPLICATION

Elastic shape for $n=14$ during the circular orbit

NUMERICAL APPLICATION

Equilibrium Values and Eigenvalues of A for the circular orbit at 1 AU

	$n=6$	$n=10$	$n=14$
Ω	$1.767 \times 10^{-7} \mathrm{rad} / \mathrm{s}$	$1.767 \times 10^{-7} \mathrm{rad} / \mathrm{s}$	$1.767 \times 10^{-7} \mathrm{rad} / \mathrm{s}$
w_{a}	-1.4668 m	-1.4479 m	-1.4444 m
w_{b}	-0.9380 m	-0.9233 m	-0.9209 m
$\#$ of λ 's	132	292	516
λ_{1-4}	0	0	0
$\lambda_{5,6}$	$\pm 1.438 \times 10^{-7}$	$\pm 1.416 \times 10^{-7}$	$\pm 1.355 \times 10^{-7}$
$\lambda_{7,8}$	$\pm i 1.767 \times 10^{-7}$	$\pm i 1.766 \times 10^{-7}$	$\pm i 1.769 \times 10^{-7}$
$\lambda_{9,10}$	$\pm i 2.421 \times 10^{-7}$	$\pm i 2.388 \times 10^{-7}$	$\pm i 2.685 \times 10^{-7}$
$\lambda_{11,12}$	± 0.001148	± 0.001112	± 0.001101
$\lambda_{13,14}$	$-0.000332 \pm i 0.078881$	$-0.000332 \pm i 0.078351$	$-0.000332 \pm i 0.078170$
$\lambda_{15,16}$	$-0.000469 \pm i 0.093866$	$-0.000463 \pm i 0.092554$	$-0.000461 \pm i 0.092144$
$\lambda_{17,18}$	$-0.000943 \pm i 0.133046$	$-0.000910 \pm i 0.129813$	$-0.000902 \pm i 0.128940$
$\lambda_{19,20}$	$-0.001199 \pm i 0.150027$	$-0.001148 \pm i 0.145763$	$-0.001133 \pm i 0.144508$
$\lambda_{21,22}$	$-0.001212 \pm i 0.150838$	$-0.001159 \pm i 0.146498$	$-0.001145 \pm i 0.145234$
$\lambda_{23,24}$	$-0.001450 \pm i 0.164970$	$-0.001385 \pm i 0.160137$	$-0.001365 \pm i 0.158598$

NUMERICAL APPLICATION

Equilibrium Values and Eigenvalues of A for the circular orbit at 1 AU

$\lambda_{25,26}$	$-0.002715 \pm i 0.225751$	$-0.002405 \pm i 0.210986$	$-0.002320 \pm i 0.206787$
$\lambda_{27,28}$	$-0.003044 \pm i 0.239051$	$-0.002731 \pm i 0.224812$	$-0.002634 \pm i 0.220319$
$\lambda_{29,30}$	$-0.003045 \pm i 0.239097$	$-0.002733 \pm i 0.224893$	$-0.002636 \pm i 0.220414$
$\lambda_{31,32}$	$-0.003383 \pm i 0.251986$	$-0.003087 \pm i 0.239036$	$-0.002980 \pm i 0.234326$
$\lambda_{33,34}$	$-0.004655 \pm i 0.295580$	$-0.003896 \pm i 0.268537$	$-0.003689 \pm i 0.260732$
$\lambda_{35,36}$	$-0.004670 \pm i 0.296069$	$-0.003957 \pm i 0.270620$	$-0.003765 \pm i 0.263389$
$\lambda_{37,38}$	$-0.004759 \pm i 0.298872$	$-0.004083 \pm i 0.274897$	$-0.003882 \pm i 0.267456$
$\lambda_{39,40}$	$-0.004801 \pm i 0.300184$	$-0.004094 \pm i 0.275274$	$-0.003890 \pm i 0.267715$
$\lambda_{41,42}$	$-0.007565 \pm i 0.376808$	$-0.005233 \pm i 0.311208$	$-0.004876 \pm i 0.299754$
$\lambda_{43,44}$	$-0.007847 \pm i 0.383764$	$-0.005298 \pm i 0.313130$	$-0.004891 \pm i 0.300194$
$\lambda_{45,46}$	$-0.008280 \pm i 0.394194$	$-0.005363 \pm i 0.315035$	$-0.004985 \pm i 0.303071$
$\lambda_{47,48}$	$-0.009178 \pm i 0.415023$	$-0.005558 \pm i 0.320716$	$-0.005214 \pm i 0.309937$
$\lambda_{49,50}$	$-0.009414 \pm i 0.420309$	$-0.006960 \pm i 0.358878$	$-0.006383 \pm i 0.342945$
$\lambda_{51,52}$	$-0.009545 \pm i 0.423216$	$-0.007144 \pm i 0.363611$	$-0.006547 \pm i 0.347303$
$\lambda_{53,54}$	$-0.009557 \pm i 0.423487$	$-0.007166 \pm i 0.364171$	$-0.006559 \pm i 0.347639$
$\lambda_{55,56}$	$-0.009557 \pm i 0.423487$	$-0.007224 \pm i 0.365625$	$-0.006633 \pm i 0.349576$
$\lambda_{57,58}$	$-0.009557 \pm i 0.423487$	$-0.008991 \pm i 0.407885$	$-0.008106 \pm i 0.386430$

NUMERICAL APPLICATION

Equilibrium Values and Eigenvalues of A for $n=14$

	$0.25 R_{0}$	$0.5 R_{0}$	$0.75 R_{0}$	$1.25 R_{0}$
Ω	$9.615 \times 10^{-7} \mathrm{rad} / \mathrm{s}$	$4.999 \times 10^{-7} \mathrm{rad} / \mathrm{s}$	$3.899 \times 10^{-7} \mathrm{rad} / \mathrm{s}$	$2.5284 \times 10^{-7} \mathrm{rad} / \mathrm{s}$
w_{a}	-4.9852 m	-5.7761 m	-6.5373 m	-5.1013 m
w_{b}	-2.8067 m	-3.6829 m	-4.0839 m	-2.4573 m
λ_{1-4}	0	0	0	0
$\lambda_{5,6}$	$\pm 7.286 \times 10^{-8}$	$\pm 2.070 \times 10^{-7}$	$\pm 2.960 \times 10^{-7}$	$\pm 4.370 \times 10^{-7}$
$\lambda_{7,8}$	$\pm i 9.614 \times 10^{-7}$	$\pm i 4.997 \times 10^{-7}$	$\pm i 3.899 \times 10^{-7}$	$\pm i 2.529 \times 10^{-7}$
$\lambda_{9,10}$	$\pm i 1.243 \times 10^{-6}$	$\pm i 8.798 \times 10^{-7}$	$\pm i 7.670 \times 10^{-7}$	$\pm i 6.161 \times 10^{-7}$
$\lambda_{11,12}$	± 0.001252	± 0.004405	± 0.007057	± 0.010065
$\lambda_{13,14}$	$-0.000332 \pm i 0.078184$			
$\lambda_{15,16}$	$-0.000461 \pm i 0.092155$			
$\lambda_{17,18}$	$-0.000902 \pm i 0.128951$			
$\lambda_{19,20}$	$-0.001133 \pm i 0.144518$	$-0.001133 \pm i 0.144514$	$-0.001133 \pm i 0.144510$	$-0.001133 \pm i 0.144516$
$\lambda_{21,22}$	$-0.001145 \pm i 0.145244$			
$\lambda_{23,24}$	$-0.001365 \pm i 0.158607$			
$\lambda_{25,26}$	$-0.002320 \pm i 0.206795$			
$\lambda_{27,28}$	$-0.002634 \pm i 0.220326$	$-0.002634 \pm i 0.220326$	$-0.002634 \pm i 0.220327$	$-0.002634 \pm i 0.220333$
$\lambda_{29,30}$	$-0.002636 \pm i 0.220421$			
$\lambda_{31,32}$	$-0.002980 \pm i 0.234332$			
$\lambda_{33,34}$	$-0.003689 \pm i 0.260738$			
$\lambda_{35,36}$	$-0.003765 \pm i 0.263395$			
\vdots	\vdots	\vdots	\vdots	\vdots

NUMERICAL APPLICATION

Elastic shapes for $n=14$

NUMERICAL APPLICATION

Equilibrium Values and Eigenvalues of A_{r} for $n=14$

	$k=8$	$k=8$ (Closed-Loop)	$k=10$	$k=12$
Ω	$1.767 \times 10^{-7} \mathrm{rad} / \mathrm{s}$			
w_{a}	-1.4393 m	-1.4393 m	-1.4393 m	-1.4393 m
w_{b}	-0.9493 m	-0.9493 m	-0.9493 m	-0.9493 m
λ_{1-4}	0	0	0	0
$\lambda_{5,6}$	$\pm 8.145 \times 10^{-8}$	$3.31 \times 10^{-6} \pm i 0.000029$	$\pm 1.451 \times 10^{-7}$	$\pm 1.451 \times 10^{-7}$
$\lambda_{7,8}$	$\pm i 1.767 \times 10^{-7}$			
$\lambda_{9,10}$	$\pm i 3.096 \times 10^{-7}$	$-0.076316 \pm i 0.076471$	$\pm i 2.432 \times 10^{-7}$	$\pm i 2.432 \times 10^{-7}$
$\lambda_{11,12}$	± 0.001171	$-0.001431 \pm i 0.001351$	± 0.001171	± 0.001171
$\lambda_{13,14}$	$-0.000461 \pm i 0.092155$	$-0.000461 \pm i 0.092155$	$-0.000461 \pm i 0.092144$	$-0.000461 \pm i 0.092144$
$\lambda_{15,16}$	$-0.000902 \pm i 0.128951$	$-0.000902 \pm i 0.128951$	$-0.000902 \pm i 0.128937$	$-0.000902 \pm i 0.128937$
$\lambda_{17,18}$	$-0.001106 \pm i 0.142740$	$-0.001106 \pm i 0.142740$	$-0.001105 \pm i 0.142725$	$-0.001105 \pm i 0.142716$
$\lambda_{19,20}$	$-0.001133 \pm i 0.144518$	$-0.001251 \pm i 0.144029$	$-0.001133 \pm i 0.144506$	$-0.001133 \pm i 0.144506$
$\lambda_{21,22}$	$-0.001372 \pm i 0.159001$	$-0.001372 \pm i 0.159001$	$-0.001372 \pm i 0.158991$	$-0.001372 \pm i 0.158991$
$\lambda_{23,24}$	$-0.002320 \pm i 0.206795$	$-0.002320 \pm i 0.206795$	$-0.002320 \pm i 0.206785$	$-0.002320 \pm i 0.206785$
$\lambda_{25,26}$	$-0.002626 \pm i 0.219981$	$-0.002627 \pm i 0.219961$	$-0.002618 \pm i 0.219630$	$-0.002617 \pm i 0.219613$
$\lambda_{27,28}$	$-0.000721 \pm i 1281.120$	$-0.000721 \pm i 1281.120$	$-0.002634 \pm i 0.220317$	$-0.002634 \pm i 0.220317$
$\lambda_{29,30}$			$-0.002980 \pm i 0.234325$	$-0.002980 \pm i 0.234325$
$\lambda_{31,32}$			$-0.000729 \pm i 1283.280$	$-0.003765 \pm i 0.263390$
$\lambda_{33,34}$				$-0.003836 \pm i 0.265872$
$\lambda_{35,36}$			$-0.000776 \pm i 1291.120$	

NUMERICAL APPLICATION

Equilibrium values for $n=14$ at a circular orbit at the L1 libration $\operatorname{point}\left(\beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=0, \delta_{1}=\delta_{2}=\delta_{3}=\delta_{4}=\delta\right.$)

	$\delta=0 \mathrm{rad}$	$\delta=\pi / 6 \mathrm{rad}$	$\delta=\pi / 4 \mathrm{rad}$	$\delta=\pi / 3 \mathrm{rad}$
R	$1.38144 \times 10^{11} \mathrm{~m}$	$1.38187 \times 10^{11} \mathrm{~m}$	$1.38224 \times 10^{11} \mathrm{~m}$	$1.38252 \times 10^{11} \mathrm{~m}$
$R_{0}-R$	$1.14555 \times 10^{10} \mathrm{~m}$	$1.14126 \times 10^{10} \mathrm{~m}$	$1.13763 \times 10^{10} \mathrm{~m}$	$1.13484 \times 10^{10} \mathrm{~m}$
w_{a}	-1.6924 m	-1.6977 m	-1.7022 m	-1.7056 m
w_{b}	-1.0791 m	-1.0806 m	-1.0819 m	-1.0829 m

NUMERICAL APPLICATION

Equilibrium values for $n=14$ at a circular orbit at the L1 libration $\operatorname{point}\left(\beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=0, \delta_{1}=\delta_{2}=\delta_{3}=\delta_{4}=\delta\right.$)

	$\delta=0 \mathrm{rad}$	$\delta=\pi / 6 \mathrm{rad}$	$\delta=\pi / 4 \mathrm{rad}$	$\delta=\pi / 3 \mathrm{rad}$
R	$1.38144 \times 10^{11} \mathrm{~m}$	$1.38187 \times 10^{11} \mathrm{~m}$	$1.38224 \times 10^{11} \mathrm{~m}$	$1.38252 \times 10^{11} \mathrm{~m}$
$R_{0}-R$	$1.14555 \times 10^{10} \mathrm{~m}$	$1.14126 \times 10^{10} \mathrm{~m}$	$1.13763 \times 10^{10} \mathrm{~m}$	$1.13484 \times 10^{10} \mathrm{~m}$
w_{a}	-1.6924 m	-1.6977 m	-1.7022 m	-1.7056 m
w_{b}	-1.0791 m	-1.0806 m	-1.0819 m	-1.0829 m

For a conventional spacecraft $R=1.48118 \times 10^{11} \mathrm{~m}$ and $R-R_{0}=1.48242 \times 10^{9} \mathrm{~m}$.

CONCLUSIONS

This presents a comprehensive mathematical model for the dynamics of a solarcraft, accounting for both rigid body and elastic motions and their interactions.

CONCLUSIONS

This presents a comprehensive mathematical model for the dynamics of a solarcraft, accounting for both rigid body and elastic motions and their interactions.

Nonlinearity of the governing equation is dealt with a perturbation solution that separates the equation into zero-order and first-order equations.

CONCLUSIONS

This presents a comprehensive mathematical model for the dynamics of a solarcraft, accounting for both rigid body and elastic motions and their interactions.

Nonlinearity of the governing equation is dealt with a perturbation solution that separates the equation into zero-order and first-order equations.

The zero-order equation is used to design an open-loop control for a desired maneuver.

CONCLUSIONS

The first-order equation is used to assess the stability about the desired maneuver and to design feedback control to alleviate perturbations.

CONCLUSIONS

The first-order equation is used to assess the stability about the desired maneuver and to design feedback control to alleviate perturbations.

High dimensionality and underactuation are dealt with a model reduction approach.

The first-order equation is used to assess the stability about the desired maneuver and to design feedback control to alleviate perturbations.

High dimensionality and underactuation are dealt with a model reduction approach.

In numerical application, circular orbits around the Sun are considered.

CONCLUSIONS

The first-order equation is used to assess the stability about the desired maneuver and to design feedback control to alleviate perturbations.

High dimensionality and underactuation are dealt with a model reduction approach.

In numerical application, circular orbits around the Sun are considered. The zero-order equation is used to determine the turn rate and elastic deformation.

CONCLUSIONS

Circular orbit at the sub-L1 libration point is also considered.
The first-order equation is used to assess the stability about the orbits.

CONCLUSIONS

Circular orbit at the sub-L1 libration point is also considered.
The first-order equation is used to assess the stability about the orbits.
Future research will focus on introduction of more effective control inputs, and control design.

