A New Model for the Planetary Radiation Pressure Acceleration for Optical Solar Sails

Livio Carzana, Pieter Visser, Jeannette Heiligers Delft University of Technology

6th International Symposium on Space Sailing June 5-9, 2023

ŤUDelft

Research Interest

Several missions have been/will be launched in proximity of the Earth

Near-Earth dynamical environment:

- Gravitational forces
- Solar radiation pressure
- Eclipses
- Atmospheric drag

Research Interest

Several missions have been/will be launched in proximity of the Earth

Near-Earth dynamical environment:

- Gravitational forces
- Solar radiation pressure
- Eclipses
- Atmospheric drag
- Planetary radiation pressure

Research Interest

Several missions have been/will be launched in proximity of the Earth

Near-Earth dynamical environment:

- Gravitational forces
- Solar radiation pressure
- Eclipses
- Atmospheric drag
- Planetary radiation pressure
 - Significant magnitude (up to ~20% of the SRP)
 - Research interest in accurately modelling the PRP-perturbed solar-sail dynamics

List of Content

- Pre-existing Models & Gap of Knowledge
- The Optical PRP Acceleration Model
 - Spherical Radiation Source Model
 - Optical Sail Model for PRP
 - PRP Acceleration Integral
- Accuracy Analysis
- Conclusions

- Solar-sail Model
 - Ideal (perfectly reflecting) model

- Solar-sail Model
 - Ideal (perfectly reflecting) model
 - Optical model

PRP Acceleration is determined based on:

- Solar-sail Model
 - Ideal (perfectly reflecting) model
 - Optical model
 - Generalized model

5

- Solar-sail Model
 - Ideal (perfectly reflecting) model
 - Optical model
 - Generalized model
- Planetary Radiation Model

- Solar-sail Model
 - Ideal (perfectly reflecting) model
 - Optical model
 - Generalized model
- Planetary Radiation Model
 - Point-like source model

- Solar-sail Model
 - Ideal (perfectly reflecting) model
 - Optical model
 - Generalized model
- Planetary Radiation Model
 - Point-like source model
 - Finite-disk source model

- Solar-sail Model
 - Ideal (perfectly reflecting) model
 - Optical model
 - Generalized model
- Planetary Radiation Model
 - Point-like source model
 - Finite-disk source model
 - Numerical (based on radiation maps)

- Solar-sail Model
 - Ideal (perfectly reflecting) model
 - Optical model
 - Generalized model
- Planetary Radiation Model
 - Point-like source model
 - Finite-disk source model
 - Spherical source model
 - Numerical (based on radiation maps)

Spherical Radiation Source Model

• Spherical Earth model

• Sail

- Spherical Earth model
- Limited visibility of the Earth from the sailcraft

- Spherical Earth model
- Limited visibility of the Earth from the sailcraft
- Simultaneous illumination of both sides of the sail

- Spherical Earth model
- Limited visibility of the Earth from the sailcraft
- Simultaneous illumination of both sides of the sail
- Isotropic radiation from the visible part of the Earth

- Spherical Earth model
- Limited visibility of the Earth from the sailcraft
- Simultaneous illumination of both sides of the sail
- Isotropic radiation from the visible part of the Earth

- Spherical Earth model
- Limited visibility of the Earth from the sailcraft
- Simultaneous illumination of both sides of the sail
- Isotropic radiation from the visible part of the Earth
 - Modeled assuming a sinusoidal variation of intensity

- Spherical Earth model
- Limited visibility of the Earth from the sailcraft
- Simultaneous illumination of both sides of the sail
- Isotropic radiation from the visible part of the Earth
 - Modeled assuming a sinusoidal variation of intensity

- Spherical Earth model
- Limited visibility of the Earth from the sailcraft
- Simultaneous illumination of both sides of the sail
- Isotropic radiation from the visible part of the Earth
 - Modeled assuming a sinusoidal variation of intensity

Spherical Radiation Source Model

- Spherical Earth model
- Limited visibility of the Earth from the sailcraft
- Simultaneous illumination of both sides of the sail
- Isotropic radiation from the visible part of the Earth
 - Modeled assuming a sinusoidal variation of intensity

Under these assumptions, the flux defined by each piece of Earth surface irradiating the sail is found **analytically**

 \hat{N}

- Equivalent of the optical sail model for SRP
- Accounts for:
 - Specular reflection of both sail sides
 - Diffuse reflection of both sail sides
 - Absorption of both sail sides
 - Emission, based on sail temperature

This model allows to define the acceleration contribution given by the radiation emitted by each piece of Earth surface

- Equivalent of the optical sail model for SRP
- Accounts for:
 - Specular reflection of both sail sides
 - Diffuse reflection of both sail sides
 - Absorption of both sail sides
 - Emission, based on sail temperature

This model allows to define the acceleration contribution given by the radiation emitted by each piece of Earth surface

20

- Equivalent of the optical sail model for SRP
- Accounts for:
 - Specular reflection of both sail sides
 - Diffuse reflection of both sail sides
 - Absorption of both sail sides
 - Emission, based on sail temperature

This model allows to define the acceleration contribution given by the radiation emitted by each piece of Earth surface

PRP Acceleration Integral

Spherical Radiation Source Model + Optical Sail Model \rightarrow PRP acceleration

Simulation settings:

- Circular, 715 km, Sun-sync. orbits
- Orbit-raising steering law
- Entire range of LTANs
- All Months
- Optical SRP model (a_c : 0.045 mm/s²)
- Different PRP models

Parametric Analysis on ACS3 Mission

Simulation settings:

- Circular, 715 km, Sun-sync. orbits
- Orbit-raising steering law
- Entire range of LTANs
- All Months
- Optical SRP model (a_c : 0.045 mm/s²)
- Different PRP models

Parametric Analysis on ACS3 Mission

Simulation settings:

- Circular, 715 km, Sun-sync. orbits
- Orbit-raising steering law
- Entire range of LTANs
- All Months
- Optical SRP model (a_c : 0.045 mm/s²)
- Different PRP models No PRP

PRP with ideal sail model

PRP with optical sail model

Numerical PRP (monthly Earth radiation maps) with optical sail model

Parametric Analysis on ACS3 Mission

Simulation settings:

- Circular, 715 km, Sun-sync. orbits
- Orbit-raising steering law
- Entire range of LTANs
- All Months
- Optical SRP model (a_c : 0.045 mm/s²)
- Different PRP models

Comparison against numerical model:

- Max. error of No PRP model: 12%
- Max. error of Ideal PRP model: 5%
- Max. error of Optical PRP model: 1.1%

Parametric Analysis on ACS3 Mission

Simulation settings:

- Circular, 715 km, Sun-sync. orbits
- Inclination-changing steering law
- Entire range of LTANs
- All Months
- Optical SRP model (a_c : 0.045 mm/s²)
- Different PRP models

Comparison against numerical model:

- Max. error of No PRP model: 55%
- Max. error of Ideal PRP model: 19.2%
- Max. error of Optical PRP model: 3.4%

Conclusions

- Research interest
- Pre-existing models & gap of knowledge:
 - Analytical models \rightarrow Low fidelity
 - Numerical models → Accurate, but need for Earth radiation maps and computational effort
- Description of the Optical PRP Acceleration Model
 - Definition of the Spherical Radiation Source Model
 - Definition of the Optical Sail Model for PRP
- Accuracy analysis:
 - Orbit raising: Max. error of No-PRP/Optical PRP equal to 12% / 1.1%
 - Inclination changing: Max. error of No-PRP/Optical PRP equal to 55% / 3.4%
 - PRP perturbation especially for eclipsing orbits (LTAN at 12:00-14:00)
- Runtime gain: 100~150 times faster than numerical model

M TUDelft

Acknowledgments

Keats Wilkie, NASA Langley Research Center Andrew Heaton, Marshall Space Flight Center

Thank you for your attention

