

Solar Sail Torque Model Characterization for the Near Earth Asteroid Scout Mission

Ben Diedrich NASA/MSFC/EV42/ESSCA/Axien The 6th International Symposium on Space Sail June 8, 2023

Introduction

- Accurate navigation of a solar sail requires
 - Accurate thrust vector control
 - Accurate sail attitude control
- Sail attitude control
 - Sizing and design depend on knowledge of solar torque
 - Torques driven by 3D shape of sail
 - Uncertainties in sail shape result in uncertain torques
- Sail torque characterization
 - Using flight telemetry, mission data, and models
 - Update torque model parameters
 - Understand attitude control dynamics of mission being flown
 - Improve control system design for follow-on sails of similar design

Near Earth Asteroid (NEA) Scout Mission

NEA Scout Control System

- 3D sail shape as predicted by finite element modeling
- Star tracker, Inertial Measurement Unit (IMU), sun sensors for attitude determination
- Reaction wheel (RW) control
- Active Mass Translator (AMT) and Reaction Control System (RCS) momentum management (MM)

Generalized Model for Solar Sails

• Torque due to arbitrary 3D sail shape

•
$$\vec{M}_{shape} = p \left(a_2 \mathbf{K}^2 \cdot \hat{\mathbf{r}}_s - a_1 \hat{\mathbf{r}}_s \cdot \mathbf{K}^3 \cdot \hat{\mathbf{r}}_s - a_3 \hat{\mathbf{r}}_s \cdot \mathbf{L} \cdot \hat{\mathbf{r}}_s \right)$$

- <u>Torque tensors 36 unique coefficients</u>
 K², K³, L
- Unit sun vector in sail body frame, $\hat{\mathbf{r}}_{s}$
- Solar pressure, p
- Derived optical coefficients

•
$$a_1 = 2rs$$

• $a_2 = \frac{B_f(1-s)r + (1-r)(e_f B_f - e_b B_b)}{e_f + e_b}$
• $a_2 = 1 - rs$

- Torque due to force and center of mass (CM)
 - $\vec{M}_{\text{force}} = -\vec{\mathbf{r}}_{\text{cm}} \times \vec{f}_{sail}$
- L. Rios-Reyes and D. J. Scheeres, Generalized Model for Solar Sails, Journal of Spacecraft and Rockets Vol. 42 No. 1 (2005) 182-185.

-			0	0
			0	0
			0	0
	A C.		$-a_1r_1$	0
 Least squares problem 	• A satisfies		$-2a_1r_1r_2$	0
• $A x = b$	• $\overrightarrow{M}_{ahama}/n = \mathbf{A} \cdot \mathbf{K}$		$-2a_1r_1r_3$	0
			$-a_1r_2$	0
$\begin{bmatrix} v^2 & v^$	 Solved from tensor 		$-2u_1r_2r_3$	0
$\begin{bmatrix} \kappa_{1,1} & \kappa_{1,2} & \kappa_{1,3} & \kappa_{2,1} & \kappa_{2,2} & \kappa_{2,3} & \kappa_{3,1} & \kappa_{3,2} & \kappa_{3,3} & \dots \\ \end{bmatrix}$	equation using the		$-u_1 r_3$	- <i>a</i> r
$K_{1,1,1}^3 K_{1,1,2}^3 K_{1,1,3}^3 K_{1,2,2}^3 K_{1,2,3}^3 K_{1,3,3}^3 \dots$	Maxima computer		0	$-2a_1r_1r_2$
• $\mathbf{x} \equiv \mathbf{K} = K_{211}^3 K_{212}^3 K_{213}^3 K_{222}^3 K_{223}^3 K_{233}^3 \dots$	algebra system		0	$-2a_1r_1r_2$
V^3 V^3 V^3 V^3 V^3 V^3	 Calculated using sun 	$\mathbf{A}_{m}^{\mathrm{T}} =$	0	$-a_1r_2$
$\Lambda_{3,1,1}$ $\Lambda_{3,1,2}$ $\Lambda_{3,1,3}$ $\Lambda_{3,2,2}$ $\Lambda_{3,2,3}$ $\Lambda_{3,3,3}$	vector at each torque		0	$-2a_1r_2r_3$
$L_{1,1} L_{1,2} L_{1,3} L_{2,1} L_{2,2} L_{2,3} L_{3,1} L_{3,2} L_{3,3}]^{T}$	measurement		0	$-a_1r_3$
	· For m torque		0	0
• $\mathbf{h} = \vec{\mathbf{M}}$	• For <i>m</i> torque		0	0
$D \equiv M_{shape}/p$	measurements:		0	0
• $\vec{M}_{shame} = \vec{M}_{total} - \vec{M}_{force}$	ן b ₁ ד		0	0
$\vec{\mathbf{M}}$ found from reaction wheel telemetry	$\mathbf{h} = \begin{bmatrix} \mathbf{h} \\ \mathbf{h} \end{bmatrix}$		0	0
• M_{total} found from reaction wheel telemetry	• <i>b</i> = []		0	0 rar
 <i>M</i>_{force} calculated from sail force model and AMT 	r $[\boldsymbol{b}_m]$		0	1 ₁ u ₃ 1 ₃
position telemetry	$\begin{bmatrix} A_1 \end{bmatrix}$		-1 ₁ u ₃ 1 ₃	0
			$r_1 r_2 u_3$	$-r_1 \ u_3$
	$\bullet A - [\dots]$		0 $-r_{r}a_{r}r_{r}$	$r_2 a_3 r_3$
• L Rios-Reves and D L Scheeres Solar-Sail	$[A_m]$		r. a.	$-r_{1}r_{2}a_{2}$
Navigation: Estimation of Force Moments			n n n n n n n n n n n n n n n n n n n	a.r
and Ontical Darameters Journal of Cuidance			_a r	u ₃ ,3
and Optical Parameters, Journal of Guidance	<i>.............</i>		$-u_{3}i_{3}$	$-r_1 a_2 r_2$
660-668.		L	2	.1

Torque Model Characterization

 $r_{1}a_{2}$

 a_2r_2

 a_2r_3

 $r_{1}a_{2}$ $a_2 r_2$

 a_2r_3

 $r_{1}a_{2}$

 a_2r_2

 a_2r_3

 $-a_1r_1$

 $-2a_1r_1r_2$

 $-2a_1r_1r_3$

 $-a_1r_2$

 $-2a_1r_2r_3$

 $-a_1r_3$

 $-r_1r_2a_3$

 $r_1 \, a_3$

 $-r_2 a_3$

 $r_1 r_2 a_3$

 $-r_2a_3r_3$

 $r_1 a_3 r_3$

Sail Characterization Process

- Hold different inertial attitudes to collect telemetry
 - Time, RW speeds, attitude, AMT position
- Calculate total momentum & torque from RW speeds
 - Use RW inertia & alignment
 - Fit polynomials to smooth & reduce data set
- Calculate sail frame sun vector
 - Use ephemeris & attitude
- Calculate sail shape torque
 - Subtract torque from solar force & CM
 - Use force model, mass model, & AMT position
- Normalize by solar pressure
 - Calculate from solar flux & ephemeris
- Construct & solve least squares problem for torque coefficients

Sail Characterization Concept of Operations

- Hold Sun Incidence Angle (SIA) 0, Roll 0
- Increment by 10 deg SIA
- Roll between +/- 30 deg
 - 30 deg steps at 10 deg SIA
 - Less sensitive to roll changes
 - 10 deg steps at higher SIA
- Step to next attitude during comm window
- Retreat to previous safe attitude if problems encountered

SIA (deg)	Roll (deg)
0	0
10	0
10	+30
10	-30
20	-30
20	-20
20	+30
30	+30
30	-30
49	-30

Simulation

- Simulation of NEA Scout at each attitude for 3 hours
- Primary telemetry is RW speeds
 - Fit polynomials to find momentum as function of time
 - Polynomial derivatives for torque as function of time

Body frame wheel momentum / solar pressure

Results - Torque Coefficients

- Substantial absolute and relative errors between plant model (truth) coefficients and those found using least-squares
- Potential causes
 - Limited range of angles
 - Full number of coefficients to converge on with limited angles
- How well do they reproduce plant model torques?

$\mathbf{L}_{est} = \begin{bmatrix} -0.0\\ 0.0\\ 0.0 \end{bmatrix}$	0805 -0	.0122 0	.0030
	035 -0	.0453 0	.0043
	022 0.6	.6433 0	.1258
$\mathbf{L}_{plant} = \begin{bmatrix} -0.\\ -0.\\ 0.0 \end{bmatrix}$	2476 —0	.0009 –	-0.0012
	0025 0.2	2328 –	-0.0050
	002 4.9	9006 1	8.2043
$\mathbf{L}_{plant} - \mathbf{L}_{est} =$	-0.1671	0.0113	-0.0042
	-0.0060	0.2781	-0.0094
	-0.0020	4.2574	18.0785
$\frac{\mathbf{L}_{blant} - \mathbf{L}_{est}}{\mathbf{L}_{plant}} = \begin{bmatrix} \mathbf{L}_{est} \\ \mathbf{L}_{plant} \end{bmatrix}$	0.6749	-12.995	56 3.4897
	2.4004	1.1948	8 1.8648
	-10.7889	0.8687	7 0.9931

Results - Torque Polynomials

• Total torque polynomial values

• Sail shape torque polynomial values

Results - Torques

- Compared plant model torques to estimated model torques
 - With same inputs as simulation
- Absolute torque differences within 10⁻⁸ Nm
 - At some samples truth torque may be within this noise floor
- Relative torque differences
 - Many data samples within
 - 5% Y
 - 10% X
 - 100% Z
 - Larger outliers
- Results promising (in X and Y) with room for improvement

Conclusions

- Took the theoretical torque characterization process from Rios-Reyes & Scheeres and implemented it for NEA Scout using detailed G&C simulation to test processing representative telemetry
- Results are promising, with large relative errors in many of the measurements
- Room to improve process

Future Work

- Study improvements to process
 - Rejection of measurements that fall within noise floor
 - Test enlarging the range of attitudes
 - Cloverleaf pattern identified by Rios-Reyes & Scheeres
 - Reduce set of coefficients being solved for using symmetry assumptions
 - Analyze noise sources in different axes and how to mitigate them
 - Tolerance of control system design to errors in torque model
- Apply process to other missions
 - ACS3
 - Low Earth Orbit; no AMT; aero, gravity gradient, & Earth radiative torques
 - Solar Cruiser
 - Lagrange orbit trajectory; AMT with full range of motion
 - Others?

