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@ Introduction

» Solar radiation pressure (SRP)-induced disturbance
torgues are a major design driver for solar sails,
impacting all aspects of the attitude control system,
including control and momentum management
actuators

* Traditionally, the center of mass (CM)/center of
pressure (CP) offset of a flat sail has been the
primary metric for predicting disturbance torques
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* It was discovered during NEA Scout mission
development that deformed sail shape effects were
a significant contributor to the overall SRP-induced N N S S
disturbance torques [3] ~ L

* The strongest determinant of the sail shape is the
deflection of each of the four booms

* Asignificant known and predictable effect on boom
deflections is the thermal distortion caused by the
gradient across the booms from the sun-facing side to
the space-facing side




m Background: NEA Scout and Solar Cruiser Modeling

* The Solar Cruiser sail modeling methodology derives from  uniformly-Scaled NEA Scout FEM
NEA Scout [3]

e Structural FEM created including tension and thermal distortion .«
effects

* Rios-Reyes/Sheeres generalized sail model [1] numerical
implementation

* FEM with ~66,000 elements transformed into 39 tensor coefficients 0.54 |
for force, 45 tensor coefficients for torque 052,
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* Computationally efficient force and torque calculation 20 ‘0
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 The NEA Scout model was scaled and adapted for Solar e T
Cruiser

* Out-of-plane tip deflections were the biggest driver of |
disturbance torques Fully Deformed Sail

* Magnitudes >5x than a flat sail of identical dimensions, and >2x |
for an identical sail with in-plane tip deflections only

* Simple scaling left a lot of uncertainty in its ability to
bound the problem, so a higher fidelity methodology was (deal Flat Sail
developed for Solar Cruiser

Flat vs. Deformed Sail Pitch/Yaw Torque vs. SIA

In-Plane Effects

Pitch/Yaw T



/A NEA Scout and Solar Cruiser Sail Comparison

OLAR CRUISER =

* NEA Scout (~86 m?) e Solar Cruiser (~1600 m?)




* Thermal modeling results dictate boom deflections which
define the “nominal” sail shape used as a starting point

* Uncertainty/error terms are defined and varied across a
large parametric sweep

* The nominal shape is modified for each error term,
producing a large database of shapes

 Rios-Reyes/Scheeres generalized sail model [1] process is
used to create sail tensors for each shape

* Forces and torques are calculated for each shape across
Solar Cruiser mission attitudes

e Force and torque data is post-processed to select two
bounding shapes: maximum pitch/yaw (in-plane) torque
and maximum roll (out-of-plane) torque

_Solar Cruiser Methodology Overview
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&\ Solar Cruiser Deformed Sall Shapes
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* Booms deflect parabolically, increasing from root to tip

* Membranes deflect according to a “billowing” shape,
captured using a 2D sinusoid with maximum deflection
occurring at quadrant centroid

* Non-sail membrane surfaces and in-plane
deformations or asymmetries are neglected. Wrinkles
are not directly modeled but effect is captured through
optical properties [3]

* Fixed-fixed boom/membrane interface at the roots and
tips without any separation or interference

* Boom tips and sail membranes can deflect out of plane
in any arbitrary direction with respect to each other
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* Nominal Boom Tip Deflections

L\ Parameter Descriptions and Variations

e QOut-of-plane, increasing parabolically from root to tip. The magnitude
and direction (out of the sail plane and toward the sun) were held
constant.

Sail Mesh Model, Worst-Case Pitch/Yaw
* Membrane Deflections

87

A VAW,

RO
LAY AV VAV

N“-.“‘:g‘.‘-\éxg‘mv

* Qut-of-plane, billowing shape with peak/trough at the centroid of each
uadrant. The magnitude was varied (0-5cm), and the direction varied in
the sail out-of-plane axis.

* Boom Tip Deflection Errors

* Random/uncertain out-of-plane boom tip deflections due to
manufacturing and assembly tolerances, tension changes in the

membrane, and thermal load uncertainties. The magnitude was varied
(0-2x), and the direction varied in the sail out-of-plane axis.
* Center of Mass Offsets

tolerances (0-2cm).

* The difference in the center of mass in-plane position relative to the
designed geometr;c center, due to manufacturing and assembly
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* SIA varied from 0 to 17 degrees (Plane Change Demonstration mission
target) and clock angle varied from 0 to 360 degrees.
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@ Resultant Torques, Solar Cruiser Deformed Shapes

* Disturbance torque curves shown across range of mission attitudes
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Solar Cruiser Deformed Shapes vs ldeal Sail

¥

* Deformed pitch/yaw shape: 1.66x maximum torque compared to flat sail

* Deformed roll shape: 2.06x maximum torque compared to flat sail

le—4 Ideal Sail vs. Deformed Sail Pitch/Yaw Torque vs. SIA le-5 Ideal Sail vs. Deformed Sail Roll Torque vs. SIA
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@ Solar Cruiser Design Considerations

* Disturbance torques from worst-case shapes were considered
bounding for the purposes of requirements derivation

 Sail shape requirements specified to ensure the as-manufactured flight sail
deformations would remain within the modeled deformations

* Tip deflections
e CM offsets

» Reaction wheel torque capability (including 100% margin, 2x control
authority)

 Momentum management actuator design

* The disturbances were accounted for in the integrated sailcraft model
for requirements verification by analysis
* Plant dynamics, control system, flight software

* Sail tensors were integrated into the model, allowing computationally
efficient force and torque calculation at simulated attitudes



* Momentum management requirements

* To desaturate momentum in the pitch/yaw RSS
(in-plane) axes, Solar Cruiser utilized an Active
Mass Translator (AMT)

* The torque predictions drive design considerations
such as AMT range of motion, rail orientation, and
bus mass allocation

* For roll (out-of-plane) momentum management,
Solar Cruiser utilized two actuator systems

» Reflectivity Control Devices (RCDs) (primary)

* Indium Field Emission Electric Propulsion
Microthrusters (IFMs) (backup)

* Roll torque predictions drive requirements on RCD
surface area, as well as IFM propellant mass needed

Solar Cruiser Designh Considerations
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@ Conclusions

* The deformed sail model results demonstrate considerably higher
expected induced disturbance torques compared to the simplified
assumption of a flat plate sail with a CM/CP offset

* Accurate prediction of these disturbances is crucial when designing
the spacecraft attitude control system

* The disturbances drive all aspects of ADCS, ultimately impacting
sailcraft characteristic acceleration and mission design as required
masses grow

* [t is recommended to begin medium/high fidelity modeling as early as
possible in the design cycle, even in the early mission concept phase



@ Forward Work

* The current approach yields a medium-fidelity model where inputs and
assumptions on local conditions (e.g., nominal boom tip deflection, tip
error uncertainty, and membrane deflection) drive the global sail shape

e Forward work is currently ongoing to improve modeling fidelity
* Cooperative effort including MSFC, LaRC, Redwire, and NeXolve

* |terative process where interactions between the boom deformations and
the membrane deformations are increasingly refined
* Top-down approach - “global “boom thermal/structural modeling outputs computed,
information used in “local” membrane quadrant models

* Assumed membrane shapes will be replaced with more physically realistic
models

* Sail tensors will be regenerated and attitude control metrics reassessed
with high-fidelity shapes




Questions
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_ Parameter Variations

Parameter Tip Error  Membrane CM Offset Tip Direction Membrane
Factor Billow Factor Direction Factor
0 0 cm 0 cm Ix -1x
Ix 1 cm +/-1 cm X-axis  Tip A+/-1x Membrane A +/-1x
1.25x 2 cm +/-2 cm X-axis  Tip B +/-1x Membrane B +/-1x
Variation
1.5x 3cm +/-1 cm Y-axis  Tip C +/-1x Membrane C +/-1x
1.75x 4 cm +/-2 cm Y-axis  Tip D +/-1x Membrane D +/-1x
2.0x Scm - - -
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