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Introduction
• Solar radiation pressure (SRP)-induced disturbance 

torques are a major design driver for solar sails, 
impacting all aspects of the attitude control system, 
including control and momentum management 
actuators

• Traditionally, the center of mass (CM)/center of 
pressure (CP) offset of a flat sail has been the 
primary metric for predicting disturbance torques 
[2]

• It was discovered during NEA Scout mission 
development that deformed sail shape effects were 
a significant contributor to the overall SRP-induced 
disturbance torques [3]

• The strongest determinant of the sail shape is the 
deflection of each of the four booms

• A significant known and predictable effect on boom 
deflections is the thermal distortion caused by the 
gradient across the booms from the sun-facing side to 
the space-facing side
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Background: NEA Scout and Solar Cruiser Modeling

• The Solar Cruiser sail modeling methodology derives from 
NEA Scout [3]

• Structural FEM created including tension and thermal distortion 
effects

• Rios-Reyes/Sheeres generalized sail model [1] numerical 
implementation

• FEM with ~66,000 elements transformed into 39 tensor coefficients 
for force, 45 tensor coefficients for torque

• Computationally efficient force and torque calculation 

• The NEA Scout model was scaled and adapted for Solar 
Cruiser 

• Out-of-plane tip deflections were the biggest driver of 
disturbance torques

• Magnitudes >5x than a flat sail of identical dimensions, and >2x 
for an identical sail with in-plane tip deflections only

• Simple scaling left a lot of uncertainty in its ability to 
bound the problem, so a higher fidelity methodology was 
developed for Solar Cruiser

3



NEA Scout and Solar Cruiser Sail Comparison

• NEA Scout (~86 m2) • Solar Cruiser  (~1600 m2)
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Solar Cruiser Methodology Overview
• Thermal modeling results dictate boom deflections which 

define the “nominal” sail shape used as a starting point
• Uncertainty/error terms are defined and varied across a 

large parametric sweep
• The nominal shape is modified for each error term, 

producing a large database of shapes
• Rios-Reyes/Scheeres generalized sail model [1] process is 

used to create sail tensors for each shape
• Forces and torques are calculated for each shape across 

Solar Cruiser mission attitudes
• Force and torque data is post-processed to select two 

bounding shapes: maximum pitch/yaw (in-plane) torque 
and maximum roll (out-of-plane) torque 5



Solar Cruiser Deformed Sail Shapes
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Assumptions and Boundary Conditions
• Booms deflect parabolically, increasing from root to tip
• Membranes deflect according to a “billowing” shape, 

captured using a 2D sinusoid with maximum deflection 
occurring at quadrant centroid

• Non-sail membrane surfaces and in-plane 
deformations or asymmetries are neglected. Wrinkles 
are not directly modeled but effect is captured through 
optical properties [3]

• Fixed-fixed boom/membrane interface at the roots and 
tips without any separation or interference

• Boom tips and sail membranes can deflect out of plane 
in any arbitrary direction with respect to each other
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Parameter Descriptions and Variations
• Nominal Boom Tip Deflections

• Out-of-plane, increasing parabolically from root to tip. The magnitude 
and direction (out of the sail plane and toward the sun) were held 
constant.

• Membrane Deflections
• Out-of-plane, billowing shape with peak/trough at the centroid of each 

quadrant. The magnitude was varied (0-5cm), and the direction varied in 
the sail out-of-plane axis.

• Boom Tip Deflection Errors
• Random/uncertain out-of-plane boom tip deflections due to 

manufacturing and assembly tolerances, tension changes in the 
membrane, and thermal load uncertainties. The magnitude was varied 
(0-2x), and the direction varied in the sail out-of-plane axis.

• Center of Mass Offsets
• The difference in the center of mass in-plane position relative to the 

designed geometric center, due to manufacturing and assembly 
tolerances (0-2cm).

• Attitude
• SIA varied from 0 to 17 degrees (Plane Change Demonstration mission 

target) and clock angle varied from 0 to 360 degrees.
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Resultant Torques, Solar Cruiser Deformed Shapes

• Disturbance torque curves shown across range of mission attitudes
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Solar Cruiser Deformed Shapes vs Ideal Sail

• Deformed pitch/yaw shape: 1.66x maximum torque compared to flat sail
• Deformed roll shape: 2.06x maximum torque compared to flat sail
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Solar Cruiser Design Considerations
• Disturbance torques from worst-case shapes were considered 

bounding for the purposes of requirements derivation
• Sail shape requirements specified to ensure the as-manufactured flight sail 

deformations would remain within the modeled deformations
• Tip deflections
• CM offsets

• Reaction wheel torque capability (including 100% margin, 2x control 
authority)

• Momentum management actuator design
• The disturbances were accounted for in the integrated sailcraft model 

for requirements verification by analysis
• Plant dynamics, control system, flight software 
• Sail tensors were integrated into the model, allowing computationally 

efficient force and torque calculation at simulated attitudes
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Solar Cruiser Design Considerations

• Momentum management requirements
• To desaturate momentum in the pitch/yaw RSS 

(in-plane) axes, Solar Cruiser utilized an Active 
Mass Translator (AMT)

• The torque predictions drive design considerations 
such as AMT range of motion, rail orientation, and 
bus mass allocation

• For roll (out-of-plane) momentum management, 
Solar Cruiser utilized two actuator systems

• Reflectivity Control Devices (RCDs) (primary) 
• Indium Field Emission Electric Propulsion 

Microthrusters (IFMs) (backup)
• Roll torque predictions drive requirements on RCD 

surface area, as well as IFM propellant mass needed
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Conclusions

• The deformed sail model results demonstrate considerably higher 
expected induced disturbance torques compared to the simplified 
assumption of a flat plate sail with a CM/CP offset

• Accurate prediction of these disturbances is crucial when designing 
the spacecraft attitude control system

• The disturbances drive all aspects of ADCS, ultimately impacting 
sailcraft characteristic acceleration and mission design as required 
masses grow

• It is recommended to begin medium/high fidelity modeling as early as 
possible in the design cycle, even in the early mission concept phase
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Forward Work
• The current approach yields a medium-fidelity model where inputs and 

assumptions on local conditions (e.g., nominal boom tip deflection, tip 
error uncertainty, and membrane deflection) drive the global sail shape

• Forward work is currently ongoing to improve modeling fidelity
• Cooperative effort including MSFC, LaRC, Redwire, and NeXolve

• Iterative process where interactions between the boom deformations and 
the membrane deformations are increasingly refined

• Top-down approach - “global “boom thermal/structural modeling outputs computed, 
information used in “local” membrane quadrant models

• Assumed membrane shapes will be replaced with more physically realistic 
models

• Sail tensors will be regenerated and attitude control metrics reassessed 
with high-fidelity shapes
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Questions
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Backup
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Parameter Variations
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Membrane 
Direction Factor

Tip Direction 
Factor

CM OffsetMembrane 
Billow

Tip Error 
Factor

Parameter

-1x1x0 cm0 cm0

Variation

Membrane A +/-1xTip A +/-1x+/-1 cm X-axis1 cm1x

Membrane B +/-1xTip B +/-1x+/-2 cm X-axis2 cm1.25x

Membrane C +/-1xTip C +/-1x+/-1 cm Y-axis3 cm1.5x

Membrane D +/-1xTip D +/-1x+/-2 cm Y-axis4 cm1.75x

---5 cm2.0x


