Blended Locally-Optimal Control Laws for Space Debris Removal in LEO using a Solar Sail

Christian Bianchi ${ }^{1,2}$, Lorenzo Niccolai ${ }^{2}$, Giovanni Mengali ${ }^{2}$, Matteo Ceriotti ${ }^{1}$
${ }^{1}$ James Watt School of Engineering, University of Glasgow, Glasgow, UK ${ }^{2}$ Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy

6 ${ }^{\text {th }}$ International Symposium on Space Sailing New York City, USA, $5^{\text {th }}-9^{\text {th }}$ June 2023

Università di Pisa
(1) Introduction

- Mission Scenario
(2) Dynamical Model
- Equations of motion
- Perturbing Accelerations
- Eclipses
(3) Transfer Strategy
- $1^{\text {st }}$ Phase: semimajor axis increase
- $2^{\text {nd }}$ Phase: blended control law
- Descent Phase
(4) Numerical Simulations
(5) Conclusion

Table of Contents

(1) Introduction

- Mission Scenario
(2) Dynamical Model
- Equations of motion
- Perturbing Accelerations
- Eclipses
(3) Transfer Strategy
- $1^{\text {st }}$ Phase: semimajor axis increase
- $2^{\text {nd }}$ Phase: blended control law
- Descent Phase
(4) Numerical Simulations
(5) Conclusion

Introduction - Space debris

Space Debris Problem

- Increasing number of objects
- Active removal strategies
- Constellations

Space Debris Model

- Circular orbits
- Same inclination
- Different RAAN

Introduction - Mission Scenario

Description

Solar Sail to:

- reach debris orbit
- collect it
- bring it down

Assumption

No phasing (ν is free)

Table of Contents

(1) Introduction

- Mission Scenario
(2) Dynamical Model
- Equations of motion
- Perturbing Accelerations
- Eclipses
(3) Transfer Strategy
- $1^{\text {st }}$ Phase: semimajor axis increase
- $2^{\text {nd }}$ Phase: blended control law
- Descent Phase
(4) Numerical Simulations
(3) Conclusion

Equations of Motion

Modified Equinoctial Orbital Elements (MEOEs)

$$
\begin{aligned}
& p=a\left(1-e^{2}\right) \\
& f=e \cos (\Omega+\omega) \\
& g=e \sin (\Omega+\omega) \\
& h=\tan (i / 2) \cos (\Omega) \\
& k=\tan (i / 2) \sin (\Omega) \\
& L=\Omega+\omega+\nu
\end{aligned}
$$

$\boldsymbol{x}=[p, f, g, h, k, L]^{\mathrm{T}} \quad$ sail state vector
$\dot{x}=\mathbb{A}(x) a+b(x) \quad$ equation of motion
$\boldsymbol{a}=\boldsymbol{a}_{S R P}+\boldsymbol{a}_{D}+\boldsymbol{a}_{L}+\boldsymbol{a}_{J_{2}} \quad$ perturbing acceleration (in RTN frame)

Equations of Motion

$$
\begin{gathered}
\mathbb{A}(\boldsymbol{x})=\left[\begin{array}{ccc}
0 & \frac{2 p}{q} \sqrt{\frac{p}{\mu}} & 0 \\
\sqrt{\frac{p}{\mu}} \sin L & \sqrt{\frac{p}{\mu}} \frac{1}{q}[(q+1) \cos L+f] & -\sqrt{\frac{p}{\mu}} \frac{g}{q}[h \sin L-k \cos L] \\
-\sqrt{\frac{p}{\mu}} \cos L & \sqrt{\frac{p}{\mu}} \frac{1}{q}[(q+1) \sin L+g] & \sqrt{\frac{p}{\mu}} \frac{f}{q}[h \sin L-k \cos L] \\
0 & 0 & \sqrt{\frac{p}{\mu}} \frac{s^{2} \cos L}{2 q} \\
0 & 0 & \sqrt{\frac{p}{\mu}} \frac{s^{2} \sin L}{2 q} \\
0 & 0 & \sqrt{\frac{p}{\mu}} \frac{1}{q}[h \sin L-k \cos L]
\end{array}\right] \\
\boldsymbol{b}(\boldsymbol{x})=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
\sqrt{\mu p}\left(\frac{q}{p}\right)^{2}
\end{array}\right]^{\mathrm{T}} \\
q=1+f \cos L+g \sin L
\end{gathered}
$$

Solar Radiation Pressure Acceleration

Ideal Force Model

- Flat plate
- Only specular reflection

$$
\boldsymbol{a}_{S R P}=\eta a_{c} \cos ^{2} \alpha \hat{\boldsymbol{n}}
$$

η : shadow factor ($\eta=0$ eclipse, $\eta=1$ sunlight)
a_{c} : characteristic acceleration $\alpha \in[0, \pi / 2]$: cone angle

Assumption

The dependence of $\boldsymbol{a}_{S R P}$ on the distance from the Sun is neglected

Solar Radiation Pressure Acceleration

Sunlight reference frame \mathcal{T}_{S} :

$$
\begin{aligned}
& \hat{\boldsymbol{x}}_{S}: \text { Sun-sail direction } \\
& \hat{\boldsymbol{y}}_{S}=\hat{\boldsymbol{z}}_{\boldsymbol{I}} \times \hat{\boldsymbol{x}}_{S} \\
& {[\hat{\boldsymbol{n}}]_{\mathrm{S}}=\cos \alpha \hat{\boldsymbol{x}}_{\mathrm{S}}+\sin \alpha \sin \delta \hat{\boldsymbol{y}}_{\mathrm{S}}+\sin \alpha \cos \delta \hat{\mathbf{z}}_{S}} \\
& {[\hat{\boldsymbol{n}}]_{R T N}=\mathbb{R}_{\mathrm{S} \rightarrow \text { RTN }}[\hat{\boldsymbol{n}}]_{\mathrm{S}}}
\end{aligned}
$$

Control Variables

Cone angle $\alpha \in[0, \pi / 2]$
Clock angle $\delta \in[0,2 \pi)$

Atmospheric Drag and Lift

Atmospheric Model

- Hyperthermal free-molecular flow ($v_{\mathrm{S} / \mathrm{C}} \gg v_{\text {thermal }}$)
- NRLMSISE-00 model (MATLAB function atmosnrlmsise00)
- Flat plate

$$
\begin{aligned}
\boldsymbol{a}_{\mathrm{D}} & =-\frac{1}{2} \frac{\rho v^{2}}{\sigma} C_{D} \hat{\boldsymbol{v}} \\
\boldsymbol{a}_{\mathrm{L}} & =\frac{1}{2} \frac{\rho v^{2}}{\sigma} C_{L} \hat{\boldsymbol{L}}
\end{aligned}
$$

ρ : atmospheric density (atmosnrlmsise00)
σ : sail loading $(\sigma=m / A)$
v : sail inertial velocity

Atmospheric Drag and Lift

Drag and Lift coefficients:

$$
\begin{aligned}
C_{D} & =2\left[\sigma_{T}+\sigma_{N} V_{R}|\cos \zeta|+\left(2-\sigma_{N}-\sigma_{t}\right) \cos ^{2} \zeta\right]|\cos \zeta| \\
C_{L} & =2\left[\sigma_{N} V_{R}+\left(2-\sigma_{N}-\sigma_{T}\right) \cos ^{2} \zeta\right]|\cos \zeta| \sin \zeta
\end{aligned}
$$

σ_{N}, σ_{T} : normal and tangential accommodation coefficients (≈ 0.8) V_{R} : ratio of the average thermal speed to the sail velocity (≈ 0.05) $\zeta \in[0, \pi]$: angle between $\hat{\boldsymbol{n}}$ and $\hat{\boldsymbol{v}}$

Earth's oblateness

$$
\begin{aligned}
& {\left[\boldsymbol{a}_{J_{2}}\right]_{\mathrm{R}}=-\frac{3 \mu J_{2} R_{\oplus}^{2}}{2 r^{4}}\left[1-\frac{12(h \sin L-k \cos L)^{2}}{\left(1+h^{2}+k^{2}\right)^{2}}\right]} \\
& {\left[\boldsymbol{a}_{J_{2}}\right]_{\mathrm{T}}=-\frac{12 \mu J_{2} R_{\oplus}^{2}}{r^{4}}\left[\frac{(h \sin L-k \cos L)(h \cos L+k \sin L)}{\left(1+h^{2}+k^{2}\right)^{2}}\right]} \\
& {\left[\boldsymbol{a}_{J_{2}}\right]_{\mathrm{N}}=-\frac{6 \mu J_{2} R_{\oplus}^{2}}{r^{4}}\left[\frac{\left(1-h^{2}-k^{2}\right)(h \sin L-k \cos L)}{\left(1+h^{2}+k^{2}\right)^{2}}\right]} \\
& \mu=3.986 \times 10^{5} \mathrm{~km}^{3} / \mathrm{s}^{2} \quad \text { Earth's gravitational parameter } \\
& R_{\oplus}=6378.14 \mathrm{~km} \quad \text { Earth's mean equatorial radius } \\
& J_{2}=1.0826 \times 10^{-3} \quad \text { Earth's second harmonic coefficient } \\
& r=\text { orbital radius of the sail }
\end{aligned}
$$

Eclipses

Eclipse Model

- Cylindrical model
- Shadow factor $\eta=\left\{\begin{array}{llll}0 & \text { if } & \theta_{\odot}+\theta_{\text {sail }}<\theta & \rightarrow \\ 1 & \text { Eclipse } \\ 1 & \text { if } & \theta_{\odot}+\theta_{\text {sail }} \geq \theta & \rightarrow \\ \text { Sunlight }\end{array}\right.$

$$
\theta=\arccos \left(\frac{\boldsymbol{r}_{\odot} \cdot \boldsymbol{r}}{r_{\odot} r}\right), \quad \theta_{\odot}=\arccos \left(\frac{R_{\oplus}}{r_{\odot}}\right), \quad \theta_{\text {sail }}=\arccos \left(\frac{R_{\oplus}}{r}\right)
$$

Table of Contents

(1) Introduction

- Mission Scenario
(2) Dynamical Model
- Equations of motion
- Perturbing Accelerations
- Eclipses
(3) Transfer Strategy
- $1^{\text {st }}$ Phase: semimajor axis increase
- $2^{\text {nd }}$ Phase: blended control law
- Descent Phase
(4) Numerical Simulations
(3) Conclusion

Transfer Strategy

Optimization Technique

Locally-optimal control laws (orbital perturbations)

Phases

- $1^{\text {st }}:$ SMA increase
- $2^{\text {nd }}$: debris targeting
- Descent

$1^{\text {st }}$ Phase - Description

Objective

Find optimal sail attitude $\left\{\alpha_{o p t}, \delta_{o p t}\right\}$ that minimizes the cost index J at each time (MATLAB fmincon)

Cost Index

$$
J=-\frac{d a}{d t}=-2 \sqrt{\frac{a^{3}}{\mu\left(1-e^{2}\right)}}\left[e \sin \nu a_{R}+(1+e \cos \nu) a_{T}\right]
$$

Stopping Criterion

The $1^{\text {st }}$ phase ends when the perigee altitude of the osculating orbit reaches 1000 km

$1^{\text {st }}$ Phase - Optimization Procedure

$2^{\text {nd }}$ Phase - Blended Control Law

Objective

Find optimal sail attitude $\left\{\alpha_{o p t}, \delta_{o p t}\right\}$ that minimizes the cost index J at each time (MATLAB fmincon)

Cost Index

$$
J=W_{\mathrm{a}} R_{\mathrm{a}} \frac{d\left(a / a_{0}\right)}{d t}+W_{e} R_{e} \frac{d e}{d t}+W_{i} R_{i} \frac{d i}{d t}
$$

$W_{e}, W_{e}, W_{i} \in[0,1]$: constant weights
$R_{\mathrm{a}}, R_{e}, R_{i}$: variable weights

$$
\begin{aligned}
& \frac{d e}{d t}=\sqrt{\frac{a\left(1-e^{2}\right)}{\mu}}\left[\sin \nu a_{R}+\left(\cos \nu+\frac{e+\cos \nu}{1+e \cos \nu}\right) a_{T}\right] \\
& \frac{d i}{d t}=\sqrt{\frac{a\left(1-e^{2}\right)}{\mu}} \frac{\cos (\omega+\nu)}{1+e \cos \nu} a_{N}
\end{aligned}
$$

$2^{\text {nd }}$ Phase - Blended Control Law

Variable Weights

- Adjust the relative importance of each orbital element according to the "distance" from the target
- The sign indicates if the o.e. time derivative has to be maximized $(R<0)$ or minimized $(R>0)$

$$
R_{a}=\frac{a-a_{t}}{\left|a_{0}-a_{t}\right|}, \quad R_{e}=\frac{e-e_{t}}{\left|e_{0}-e_{t}\right|}, \quad R_{i}=\frac{i-i_{t}}{\left|i_{0}-i_{t}\right|}
$$

where
$\left\{a_{t}, e_{t}, i_{t}\right\}$ are the target semimajor axis, eccentricity and inclination $\{a, e, i\}$ are the sail instantaneous orbital elements
$\left\{a_{0}, e_{0}, i_{0}\right\}$ are the sail orbital elements at the end of the $1^{\text {st }}$ phase

$2^{\text {nd }}$ Phase - RAAN Matching

J2 Perturbation

- a, e, i undergo short-term oscillations
- Ω has a secular drift ($\dot{\Omega}<0$ for prograde orbits)

Assumption

RAAN behaviour depends only on J_{2} (contribution of SRP is negligible)
RAAN of target debris: $\quad \Omega_{t}(t)=\Omega_{t, 0}+\dot{\Omega}_{t} t$
RAAN of solar sail: $\quad \Omega(t)=\Omega_{0}+\dot{\Omega}_{\text {avg }} t$
$\dot{\Omega}_{\text {avg }}=-\frac{3}{2} \frac{J_{2} \sqrt{\mu} R_{\oplus}^{2}}{a_{\text {avg }}^{7 / 2}\left(1-e_{\text {avg }}^{2}\right)^{2}} \cos i_{\text {avg }}$
$a_{\text {avg }}=\left(a_{0}+a_{t}\right) / 2 \quad e_{\text {avg }}=\left(e_{0}+e_{t}\right) / 2 \quad i_{\text {avg }}=\left(i_{0}+i_{t}\right) / 2$

$2^{\text {nd }}$ Phase - RAAN Matching

Estimated flight time Δt s.t. $\Omega_{t}(\Delta t)=\Omega(\Delta t)$

$2^{\text {nd }}$ Phase - Genetic Algorithm

Objective

Find the 3 optimal constant weights $W_{a, e, i}$ that minimize the objective function F

GA Objective Function

$$
F=\left(\frac{a_{\mathrm{fin}}-a_{t}}{a_{0}}\right)^{2}+\left(e_{\mathrm{fin}}-e_{t}\right)^{2}+\left(i_{\mathrm{fin}}-i_{t}\right)^{2}+\left(\Omega_{\mathrm{fin}}-\Omega_{t}\right)^{2}
$$

$a_{\mathrm{fin}}, e_{\mathrm{fin}}, i_{\mathrm{fin}}, \Omega_{\mathrm{fin}}:$ sail orbital elements at the end of propagation time Δt

Approximate Model

An approximate model for the transfer is necessary to reduce the computational time of the GA

$2^{\text {nd }}$ Phase - Approximate Model

Descent Phase - Description

Assumptions

- Flight time is not constrained
- RAAN matching is not necessary
- Sail loading $\sigma_{\text {desc }}=2 \sigma$ due to debris mass
- $\sigma_{\text {desc }}=2 \sigma \Longrightarrow a_{c, \text { desc }}=a_{c} / 2$

Initial Orbit (= Debris Orbit)

$$
\begin{aligned}
& a_{0}=a_{t}=R_{\oplus}+1200 \mathrm{~km} \\
& e_{0}=e_{t}=0 \\
& i_{0}=i_{t}
\end{aligned}
$$

Final Orbit (= Parking Orbit)

$$
\begin{aligned}
& a_{\mathrm{fin}}=R_{\oplus}+600 \mathrm{~km} \\
& e_{\mathrm{fin}}=0 \\
& i_{\mathrm{fin}}=i_{t}
\end{aligned}
$$

Descent Phase: blended control law

Objective

Find optimal sail attitude $\left\{\alpha_{o p t}, \delta_{o p t}\right\}$ that minimizes the cost index J at each time (MATLAB fmincon)

Cost Index

$$
J=R_{a} \frac{d\left(a / a_{0}\right)}{d t}+R_{e} \frac{d e}{d t}+R_{i} \frac{d i}{d t}
$$

$$
R_{a}=\frac{a-a_{\mathrm{fin}}}{\left|a_{0}-a_{\mathrm{fin}}\right|}, \quad R_{e}=e-e_{\mathrm{fin}}, \quad R_{i}=i-i_{\mathrm{fin}}
$$

Weights

Necessary to redefine R_{e} and R_{i} since $e_{0}=e_{\text {fin }}=0$ and $i_{0}=i_{\text {fin }}$

Table of Contents

(1) Introduction

- Mission Scenario
(2) Dynamical Model
- Equations of motion
- Perturbing Accelerations
- Eclipses
(3) Transfer Strategy
- $1^{\text {st }}$ Phase: semimajor axis increase
- $2^{\text {nd }}$ Phase: blended control law
- Descent Phase

4 Numerical Simulations
(5) Conclusion

Numerical Simulations - $1^{\text {st }}$ Phase - Data

Start Date: 01/01/2030
Characteristic Acceleration: $a_{c}=0.1 \mathrm{~mm} / \mathrm{s}^{2}$
Stopping Criterion: $h_{P}=1000 \mathrm{~km}$
Sail parking orbit
$h_{0}=600 \mathrm{~km}$
$e_{0}=0$
$i_{0}=60 \mathrm{deg}$
$\Omega_{0}=0 \mathrm{deg}$

Target debris orbit

$h_{t}=1200 \mathrm{~km}$
$e_{t}=0$
$i_{t}=60 \mathrm{deg}$
$\Omega_{t}=\Omega_{t, 0}+\dot{\Omega}_{t} t$

$1^{\text {st }}$ Phase - SMA increase - Plots

Eccentricity

Results
$\Delta t=91.8$ days
$\Delta a=455.2 \mathrm{~km}$
$\Delta e=0.0074$
$\Delta i=-0.1251 \mathrm{deg}$

Eclipse Time

$\frac{\Delta t_{\mathrm{ecl}}}{\Delta t} \approx 23.53 \%$

$2^{\text {nd }}$ Phase - Debris targeting - Results

Genetic Algorithm Settings

Population Size $=50$
Elite Count = 2
Number of Generations $=10$
Function Tolerance $=1 \times 10^{-6}$
$\Delta \Omega_{0}=10 \mathrm{deg}$

GA Results

$\mathbf{W}_{\mathbf{a}}=0.27849822$
$\mathbf{W}_{\mathbf{e}}=0.83082863$
$\mathbf{W}_{\mathbf{i}}=0.76324954$
$F_{\text {opt }}=1.0907 \times 10^{-6}$
Flight Time $=101.9$ days

Orbit	$a[\mathrm{~km}]$	e	$i[\mathrm{deg}]$	$\Omega[\mathrm{deg}]$
Sail initial	7433.5	0.0074	59.87	56.98
Debris initial	7578.1	0	60	46.98
Debris final 130.07 Sail final Approx 7588.7 0.0009 59.99 130.05 Sail final Exact 7574.4 0.0017 60 127.23 land				

$2^{\text {nd }}$ Phase - Debris targeting - Plots

Results

$\Delta t=101.9$ days
$\Delta a=-3.7722 \mathrm{~km}$
$\Delta e=0.0017$
$\Delta i=-0.0002 \mathrm{deg}$

Right Ascension

$\Delta \Omega_{0}=10 \mathrm{deg}$
$\Delta \Omega_{\mathrm{fin}} \approx 2.84 \mathrm{deg}$

Descent Phase - Plots

Eccentricity

Results

$\Delta t=384.4$ days
$\Delta a=-1.8550 \mathrm{~km}$
$\Delta e=0.0009$
$\Delta i=-0.0361 \mathrm{deg}$

Table of Contents

(1) Introduction

- Mission Scenario
(2) Dynamical Model
- Equations of motion
- Perturbing Accelerations
- Eclipses
(3) Transfer Strategy
- $1^{\text {st }}$ Phase: semimajor axis increase
- $2^{\text {nd }}$ Phase: blended control law
- Descent Phase
(4) Numerical Simulations
(5) Conclusion

Conclusion

Conclusions

- Locally-optimal laws work well in perturbed environments
- Blending seems effective in controlling more orbital parameters at the same time
- Approximate model is pretty accurate for a preliminary study

Model Improvements

- Way to estimate the RAAN at the end of the $1^{\text {st }}$ phase
- Increase number of generations in the Genetic Algorithm

Further Developments

Further Developments

- Switching point between $1^{\text {st }}$ and $2^{\text {nd }}$ phase to be optimized
- Higher performance sails to reduce parking orbit's height
\rightarrow shorter re-entry time for debris
- Multiple debris removal strategy
\rightarrow best use of solar sails as propellantless devices
\rightarrow reduction of launch cost

Thank you for your attention!

Christian Bianchi

christian.bianchi@phd.unipi.it
Department of Civil and Industrial Engineering
University of Pisa, Pisa (PI), Italy

