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Description of the ballistic scheme of the mission and 3

the design parameters of the spacecraft

Ballistic scheme of the mission

o A spacecraft with a folded sail is brought out of the Earth's sphere of action onto a heliocentric flight trajectory that
provides the specified parameters of a gravitational maneuver near the Earth due to the propulsion system of the upper
stage.

o A year later, after performing a gravitational maneuver in the Earth's gravity field, the spacecraft fairing is reset and the
solar sail opens.

o Further heliocentric movement is carried out due to light pressure and the spacecraft enters orbit, most of the time lying in
the asteroid belt.

o The solar sail assumes a position perpendicular to the light stream, and further trajectory changes occur only due to the
degradation of the sail surface, long-term studies of the asteroid belt are carried out.
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From: G.W. Hughes, M. Macdonald, C.R. Mclnnes et al. Sample
Return from Mercury and Other Terrestrial Planets Using Solar
Sail Propulsion, Journal of Spacecraft and Rockets, 43 (2006).

As a prototype, the solar sail of the
SPACECRAFT project is used to deliver
soil samples from the surface of Mercury
to Earth. According to the calculations, a
frame-type solar sail delivered by a
Japanese H-2A launch vehicle with an
excess of speed to reach a heliocentric
trajectory will be able to give a payload
weighing 1905 kg an acceleration of 0.25 *
10-3 m/s”2.

Figure: Placement of a spacecraft with a solar sail
delivering soil from the surface of Mercury under the
fairing of the H-11A launch vehicle



Table 1 - Design parameters of the spacecraft 5
Weight of the Payload weight, The mass of the _ _
Sail shape, m Acceleration, mm/s?
spacecraft, kg kg solar salil, kg .
2353 1905 448 275%275 0.25

Table 2 - Mass characteristics of the solar sail for the delivery of Mercury soil

Element Description Weight, kg
Payload weight of the sail 1905
The bearing film of the CP1 sail 1s 2 mkm 216
Aluminum reflective coating with a thickness of 0.1 mkm 41
Binding coating 26
Frame beams sails 54
Mechanical deployment and management systems 111
Total mass of solar sail assembly 448
Initial mass of the spacecraft 2353




Dimensions of the solar sail: 275m x 275m
Sail area: 75’625 m?

Characteristic acceleration: 0.25 mm/s? (Earth to Mercury),
0.78 mm/s? (return)

Energy characteristics of the Japanese H-I1A 202-4S launch vehicle
with the reference of which the device was designed, make it
possible to put up to 2,600 kg of payload into a parabolic orbit out
of the Earth's sphere of action (11.2 km/s).



Lighter Spacecraft Option (for research purposes)
Choice a lighter spacecraft weighing 500 kg (for research purposes)

e Sail area reduced to 16’070 m?

Table 3 — Parameters of the selected spacecraft

.

Design parameters of the device

—

500

[nitial mass of the spacecraft, kg

Sail area, m2 16070

Reflection Coefficient (Al) 0,777

Specular Reflection Factor (Al) 0,900

Secondary radiation coefficient Al 0’?40
Cr 0,540

Non-Lambert coefficient Al 0’?5_}0
Cr 0,550




The mathematical model used for
motion of a spacecraft

with a solar sail




The following assumptions are used to
describe the motion of the spacecratt:

- the motion of the spacecraft in the plane of the ecliptic is
considered, the orbits of the planets are considered
circular;

- gravitational or other disturbances from any celestial

objects are not taken into account;

- the intensity of the Sun's radiation varies inversely
proportional to the square of the distance and does not
change with time (does not depend on solar activity).




2
ﬂ — _r _ _ 1 Vi Describes motion in a flat polar coordinate system
=V, =a,(r,A,t) >+ —, s T
dt dt r r Dimensionless form
Equations describe the motion:
U Vu qu W Vu . leferentlal equations for radius and
—=— — = q, (7", /11’ t) _ velocity components
J r dt a « Acceleration generated by the solar sail

depends on distance and angle of the sail

Coordinates and directions of vector
« Coordinates: r (radius vector) and u (latitude argument)

« \elocity components: V. (radial) and V;, (transversal)
 Acceleration components: a,- and a,,

Fig. 2. Polar plane heliocentric coordinate system
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Boundary Conditions

t:T, r=r, VTZVF VuZVu

t’ t’

Boundary conditions for achieving the spacecraft's target orbit
Duration of flight: T
Heliocentric radius and velocity components in the target orbit: 7, V.

Depend on the angle of the true anomaly at the final moment of time

t)

4

t
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Components of Acceleration

Sum of two components: directed along the normal to the surface of the sail (a, ) and
parallel to the surface of the sail in a plane passing through the radius vector (a;)

Equations (1) and (2) describe the components of acceleration

where S, - is the power of the solar electromagnetic
a, = 2T S . cos 0 - (al cos O + az) (1) waye mc@ent_on a unit surface of a sail located at a
cm heliocentric distance r;
c - the speed of light;
Sy : m - the mass of the spacecraft;
a) = %S 1050 -azsing (2) 5 - surface area of the sail;
0 - the angle between the direction to the Sun and the
normal to the surface of the sail (installation angle);

a1 = 1+ P p - reflection coefficient; ¢ - the mirror reflection
factor of the sail surface; & ,&, - the radiation
. EfBr—epBp coefficients of the front and rear surfaces of the sail;
a2 = Bf(1 ¢)p+(1—p) eftep B¢ ,Bj, - are non-Lambert coefficients of the front and

rear surfaces of the sail, which describe the angular

_ distribution of emitted and diffusely reflected
a;=1—¢p photons.



The power of the solar electromagnetic wave varies inversely-
proportional to the square of the heliocentric distance:

5, =5 (%), ©

where S, = 1,36 - 103W/m? — solar constant (the intensity of the
Sun's radiation in the Earth's orbit),

ro = 1AU = 1,496 - 10% km - is the average distance from the
Earth to the Sun.



Thrust 14

Equations (3) and (4) describe the thrust from light pressure and the deviation of thrust direction from the
sail surface's normal
Impact of imperfect reflection on thrust magnitude and direction

a= :_1:15 cos 01+ 2¢pcos26 + (gp)% + 2a,(1 + ¢p) cos 6 + a,? (3)
_ ) _ agsinf _ (1-¢p)siné
tgep = a, aqcosO+a, (1+cp) cos O+a (4)
a= :—;5(0)\/1 + p? — 2pcos(m — 26) = :—T;SCOSH\/]. + p? + 2pcos 26, (5)
. _ (1—-p) sin 6
Sing = J1+p2+2p cos 26 ()
Conclusions:

(1) a decrease in the magnitude of acceleration from the forces of light pressure

(2) a narrowing of the range of available acceleration angles relative to the direction of the luminous flux

(3) an increase in the share of absorbed energy of the luminous flux, which leads to an increase in surface temperature and
acceleration of degradation processes of the sail surface.



Degradation of Soil surface optical parameters
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Surface degradation due to outer space factors [Dachwald, McDonald, Mclnnes et al]:
Decrease in reflection coefficient, increase in absorbed radiation.

Parametric dependencies for calculating changes in optical characteristics

( 1+de—-2Z®
f+d forp €{p,¢},
PO _ SY0
Do 1+d(1—e ) forp =g,
\ 1 for p € {eb,Bf, Bb},

Total dose of solar radiation received during the flight
_ Z(t) ro t cos 6(t)
2(t) = 5. =1 ey Tz dt (8)

where T, = 365-24-3600 s — corresponds to one year in
seconds.

(7)

where 2(t) — the dimensionless total dose of
solar radiation received during the flight;

A - degradation coefficient; d - degradation
factor.

The dimensionless total dose of solar radiation
IS calculated as the ratio of the total radiation
power received by the sail during the flight to
the solar radiation power received by a
platform of 1 m2 at a distance of 1 AU, for one
year ¥, = 15,768 - 1012 J/m?.



Degradation Coefficient

The degradation coefficient A is determined based on

half the lifetime of the sail under the influence of solar

radiation:
In?2

A= — (13)
where J - the dose of solar radiation, which leads to a
half deterioration of optical characteristics, that 1s,

corresponds to the value of the optical characteristic.

A~ PotPx
p — 2 *
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Degradation Factor Y

The degradation factor d determines the value of the
optical characteristic p.,, at which the sail should stop
functioning. At the same time

_ P _ S _
p::(:: — ﬁ_ﬂ goo — ﬁ_ﬁ efj': T Efﬂ(]‘ + d):(‘14)

Even a preliminary analysis of formulas at Eg.11. — 14. shows that the acceleration from the
solar sail, and, consequently, the laws of sail control and the corresponding trajectories of
motion depend on the optical characteristics of the surface, and the optical characteristics, in
turn, depend on the laws of control and flight path. Therefore, a comprehensive analysis of
possible interplanetary missions of spacecraft with a solar sail requires taking into account
all these interrelated parameters.



Efficiency of gravitational manoeuvre. 18

Mission Assumptions:

* Trajectory lies in the plane of the ecliptic.

« Earth's orbit is circular.

» Passive motion of the spacecraft after leaving Earth's sphere of action in an orbit with a large semi-axis of 1 AU.

* Next meeting with Earth occurs in a year.

« Variable parameters: eccentricity of Earth-to-Earth flight orbit and radius of pericentre of geocentric hyperbola

during gravitational manoeuvre. _ _
Dependence of the required velocity

AV rawe on the eccentricity of the transition
0 orbit.
. okea 1 —\enus,
8 AN 2 — Mars,
o _
) / /%/ 3 — Mercury,
4 — Asteroid belt,
4 /< : 5 — characteristic speed to create an
< _ Earth-Earth  orbit with a given
: 7 1 eccentricity
0
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Aphelion of Resulting Orbit
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We will use in further
calculations a safe distance from
the center of the Earth of 10
thousand km and we will get that
with the selected eccentricity of
the orbit, the maximum value of
aphelion 2.27 AU is achieved with
the eccentricity of the heliocentric
orbit after performing a
gravitational manoeuvre 0.41506
and a large semi-axis 1.70958 AU.

K

Aphelion of Resulting Orbit vs. Geocentric Perigee and Eccentricity of Transition shows aphelion radii of
passive orbits achievable after gravitational manoeuvre.

Higher aphelion achieved at smaller radii of geocentric pericenter for eccentricities > 0.15.

Selected eccentricity of the orbit yields maximum aphelion of 2.27 AU.
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Heliocentric Motion Control after Gravity Manoeuvre

Equations of motion and acceleration projections: Solar sail acceleration (a) has two projections: radial and
transversal.

Equations (9) and (10) provide the scalar values of the projections.
a, = a, cos 0 + a)lsinf| = a; cos(A; + @) + ajlsin(1, + @), 9)

ay = a; sinf —acos 0 -sign(0) = a, sin(4; + ¢) — a; cos(4; + @) - sign(4; + @) (10)

We will look for the law of changing the angle of the sail 1, € [— = %] ,such that it reaches the required

orbit as soon as possible, that is, the boundary conditions in Eg. 2 are met and the minimum functionality is
provided by

T = fOT dt — min. (11)



Hamiltonian Formulation: 21

Hamiltonian equation (12) derived from the system of equations.
F., B, Py, Py, — conjugate variables, a. — nominal maximum acceleration acting on the sail at a distance of 1

AU.

Control Law and Maximum Hamiltonian:
According to the Pontryagin maximum principle, control law maximizing the Hamiltonian is known.
Equation (13) defines A, based on conjugate variables also eta is calculated based on conjugate variables

Vi Ve 1 a Wh | ac .
H=Pr'V7‘+Pu'?+PVr<T_T_2+T_2COSB/11 +P, |- . +r—2c052/115m/11
v, cos3 0 1 V2 cos?8sin8 WV,
H =V, + Tuq"u + (ac 2 72 + Tu) Yyr + (ac 2 - L;,r) Yvw (12)
P
A= z n — arcsin T :
2 3\/PVr2+PVu2

(13)

Py,

2 2.
\/PVT +PVu

where n = arccos
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*Two-Point Boundary Value Problem:

Optimal control and trajectory determined by solving a two-point boundary value problem.

The system of equations is supplemented by differential equations (equation set given below) for conjugate

variables.
=

*Optimal Control with Varying Angular Range:

If the angular range of the flight is not fixed, finding optimal control becomes a three-parameter boundary
value problem.

Initial values of conjugate variables are determined to satisfy boundary conditions.

dp]-ﬂ . l["?uz 2 I"Trvu Eﬂ-c 3
E—Pyr(r—z—r—g)—fov > +1—C{]S .3.1.,

P
d—: =0 = P, = const

der
dt

V;
::'_f%'+upmij%,

dPy,, Py Vr—2Py, Wy
dt T '




The results obtained during the simulation

Energy capabilities allow launch of spacecraft with eccentricity of 0.264.

Table 4: Parameters of spacecraft's heliocentric orbit before and after gravitational manoeuvre.

Intermediate orbit Orbit after gravitational
Earth-Earth manoeuvre
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Big half-axis, million km 149.6 255.75273
Eccentricity 0.264 0.41506

o [<Y

Radial component of the 7.863 4.802
spacecraft velocity, km/s

Transversal component of the PApi:; 34.631
spacecraft velocity, km/s




Solar sail unfolds after gravitational manoeuvre
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Figure 1: Optimal change in sail angle and spacecraft's radius vector.
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Figure 2: Change in the semimajor axis and eccentricity of the spacecraft orbit
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2
Whole ballistic scheme of mission, accounting for sail surface degradatio5n

Duration of spacecraft's movement to
; asteroid belt: 2116.08 days or approximately

5.8 years.
T Total duration of launching spacecraft into

-
- -
- -

working orbit is 6.8 years, considering passive
motion before gravitational maneuver.
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Conclusion »

- Mathematical model of gravitational maneuver is
constructed

(acceleration, velocity, optical parameters,
eccentricity, angles, aphelion parameters)

- Deployment of small solar sail in the asteroid
belt, long mission

- Modern solar sail



MAXWELL EQUATIONS, THEIR HAMILTONIAN
AND BIQUATERNIONIC FORMS
AND PROPERTIES OF THEIR SOLUTIONS

Classic system of Maxwell equations has the form: [Alexeyeva L.A.]

o f (1)
tH=—+4 1),
rotH = ==+ j%(z,1)

divD = p"(z,t), D =cE,

o B (2)
divH=0, B=puH,

r € R%, t € R!. Here electric conductivity € and magnetic permeability p are
constants in isotropic EM-medium. Vectors E, H are the tentions of electric and
magnetic fields, B is magnetic induction , D is electric displacement, j°(x,t)
are the density of electric currents, p” is the density of electric charges.



Symmetric form of Mazwell equations:
—eOE +rotH = (z,t), p 0,H +rotE = j" (x,1), (3)
edivE = p”(z,t), —p divH = p" (z,1). (4)
It's equivalent to MEqs when magnetic charges and currents are equal to zero:
pr =0, j*=0. (5)
The divergence from MEqs (3) gives charges conservation law

H
agt + divj® =0, %mmﬂ_o. (6)



Biquaternions
We consider the functional space of biquaternions (Bgs.) in Hamilton’s form

of quaternions representation |13]:

B(M) = {F = f (r,2) + F (r,x))
on Minkowski space M = {(7,z) : x = 2?21 ziej}, f(7,2) is a complex func-
tions , F'(7,z) is a three-dimensional complex vector-function. They are locally
integrable and differentiable on M or, in general case, they are generalized func-

tions [9]; 1,1, €9, €3 are the basic elements in biquaternions algebra.
Summation and multiplication on B (M) have the forms:

F+B=(f+F)+(b+B)2(f+b)+(F+B),



Biquaternionic and hamiltonian form of MEqgs

If to introduce the biguaternions of EM -field:
EM-tension

A=0+A=eE+i,/uH

charge-current

© = (ip+ J) = ip” /e + Vij"®,

energy-impuls
E=0.5ATcA=0,5(A.A)—-0.5[A, A=W +iP.

where

W = % (E ||E||E + p ||H||E) is a density of energy of EM-field ,

P=c! | E, H| is Pointing vector,

then the Maxwell equations can be written in the form of the biwave equation:
Biguaternonic form of Marwell equations

ViA=-0 (16)



Generalized solutions of M Eqgs biform

Solutions of MEqs biform are
A=-V (x0O)+ A" (20)

where spinor A is arbitrary solution of homogeneous Maxwell equation:

3
A=Vl +i) VT (ley), (21)
j=1
Jy? =0, j=0,1,2,3,4 (22)

W — / o (€) exp(—i(€,x) — i €] £) derdeades, Vi (€) € Li(RP)

R3



LIGHT AS A PHOTONS CLOUD AND ITS BIQUATERNIONIC REPRESENTATION
Let consider the photons emitted by monochromatic charges-currents @(x, w)exp(—iwr). They

have the following biquaternionic representation through eElementary photons by use
biquaternionic convolution:

D(x, ) =iO(x.0)*D_(x) (15)
For regular biquaternions this convolution has the next integral representation:

D(x,0) =i [ O(x—y,0)° D, (y, ) dydydy;
RB



Example 2 (light sphere): ©(x,w)=ad(b-|x|). This is simple layer on sphere - singular
generalized function. Photons claud is described by next biquaternion:

(D(x@) = (x,0)+D(x,w)

m(x,m)=-$5(b- *{“"i +grader}=

iy

L{é(br)*m +grad(€ *5@-?)},
V I

4r
(20)

2001 0,

O(x,0)= ¢ {(: —L] {(r + 1] sin wb +ibcos a)b} M mb}ex
2r or 0 0

o(x,0) = ‘ {bcosa}b—i[ﬂljsin wb},




Example 3 (light ring): @(x,a;)zaﬁ(b—,/xf +x§)5(x3). This is simple layer on the ring in

horizontal plane - singular generalized function. Photons cloud is described by next

biquaternion: ; e o
@(x, ) :——H(b—||x||2)5(x3)*7[ ¥

l'l')l

:__H( —||1:|| ){x %) F 4;(3(»,,?2 . ( ||x|| )fr %) r } ;?Z'ax[ ( —”X” )“ ) F )

x> +(xs—8)"

- \ |’f||§+("f'+_"’]‘1 e;‘mg
_ E,wuxn) P _d¢, |, =%+

P(x,w) = —l—(em
? EN a1

ieor

CD(x,w):;—Eeu_mpﬂﬁ(b—ﬂ/xf+x§) S ( (5=[f,) * J

(%.%2) p 4 O Ox, (x.%) p

Here we use spherical coordinate system (r,@,)with vertical axis X3 and next designations:

CDSS—"x" ||Jr||:2 ﬂfx +x y=(»,0), r(y)= E@
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