Photon-sail trajectories towards exoplanet Proxima b using heteroclinic connections

T. J. Rotmans

M. J. Heiligers

Image Credit: ESO/ M. Kornmesser "Artist's impression of the planet orbiting Proxima Centauri

Inspiration

Breakthough Starshot

- Mission to Alpha Centauri
- Swarm of sails to Proxima b
- Appr. 20 yrs travel time

Heller & Hippke (2017)

"Deceleration of high-velocity photon sails into bound orbits at Alpha Centauri"

Schoutetens, Dachwald & Heiligers (2021)

"Optimization of photon-sail trajectories in the Alpha Centauri system using evolutionary neural networks"

Capture in bound orbit in 70-80 years

TUDelft

Outline

Alpha Centauri

The Interstellar Medium

Alpha Centauri – moving stars

Alpha Centauri – moving stars

Heteroclinic connections

- Connections between Lagrange points
 - 5 points in a 2-body system
 - Centrifugal and gravitational forces balance each other
 - Rotate along with these masses
 - Few orbit corrections required
 - James Webb Space Telescope

Lagrange points in Alpha Centauri

2 ~ 10⁻³

1.5

Outline

Methodology

Two phase approach:

Define departure system

Define arrival system

Place section Q

Compute departure trajectory

Compute arrival trajectory

Evaluate the mismatch/error

Methodology

14

Dynamical model

Elliptic restricted three-body problem (ERTBP)

- Describes the motion of a massless particle relative to 2 large masses
- 2 large masses move in elliptic orbits about the barycenter
- Motion described using a rotating, dimensionless frame
- Can be augmented by a photon sail

Photon-sail model

Ideal sail model

- Perfectly reflecting sail
- No absorption, re-rediation, or wrinkles

Sail attitude and efficiency

- Cone angle α
- Clock angle δ
- Lightness number β

Sail configurations

Current technology allows for $\beta = 0.01-0.05$!!

7.6e-4 g/m2

Departure/arrival locations

Optimization problem

- Connecting the *departure* phase with the *arrival* phase
- Constant sail attitude
- Evaluation at surface Q:
 - Position mismatch Δr
 - Velocity mismatch Δv
 - Time mismatch Δt

Two optimization techniques

- Grid search
- Genetic algorithm

Optimization problem

Outline

Results grid search (departure system)

Results grid search (departure system)

Sail 3 (β = 1779, one-sided)

Currently feasible sail (β = 0.05, one-sided) clock $\beta = 0.05$, departure trajectories from L_2 angles 180 AC-A AC-B • 160 20 140 0 120 -20 [NV] ⁻²⁰ \tilde{z} ⁻⁴⁰ 100 80 -60 60 -80 40 -40 20 -20 -30^{-20^{-10⁰}} 10 $\tilde{\mathbf{Y}}_d$ [AU] 0 0 20 $\tilde{\mathbf{X}}_d$ [AU]

Results grid search – preliminary conclusions

Velocity mismatch difficult to overcome

- Acceleration of the sail in the departure system much larger than the deceleration in the arrival system
- Due to the different compositions of the systems

Departure location is of large influence on the results

The addition of a double-sided reflective sail does not add value over a one-sided sail

Most promising connection for sail 1: L_2 -point in AC-A/B to the L_1 -point in AC-C/Prox b

Most promising connection for sail 3: L_2 -point in AC-A/B to the L_3 -point in AC-C/Prox b

Results genetic algorithm

Best trajectory for sail configuration 3 (fastest transfer trajectory)

- One-sided
- β = 1779
- 315x315 m
- Graphene sail
- 10 gram payload

From the L_2 -point in AC-A/B to the L_3 -point in

AC-C/Proxima b

Results GA – sail configuration 3

Results GA – sail configuration 3

Best transfer

Sail configuration 3

- Departure from AC-A/AC-B in 2144 Arrival at AC-C/Proxima b in 2379
- Total transfer time 235 years
- Remaining link errors:
 - Position $\Delta r = 9 AU$
 - Velocity $\Delta v = 761 \text{ m/s}$
 - Time $\Delta t = 161 \text{ days}$

Sail configuration 1

- Departure from AC-A/AC-B in 2143 Arrival at AC-C/Proxima b in 3168
- Total transfer time 1025 years
- Remaining link errors:
 - Position $\Delta r = 70 AU$
 - Velocity $\Delta v = 236 \text{ m/s}$
 - Time $\Delta t = 281 \ days$

Considered small compared to:

- Total distance travelled (~13,000 AU)
- Velocity on Q (57,000 263,000 m/s)
- Total travel time (235 1025 yrs)

28

Outline

Conclusions

- This research proved that it is possible to find transfers to Proxima b using photon-sail augmented heteroclinic connections
- The best solutions found contained small remaining errors relative to the total distance travelled, the velocity on surface Q and the total travel time
- A very futuristic sail configuration is needed to keep the transfer times reasonable
- The combination of applying a grid search and a genetic algorithm proved to be an efficient method that gave both a good insight in the problem and was capable of finding (sub-)optimal solutions
- The different nature of the two systems (considering luminosity's, one or two stars, mass of the stars) make that especially finding a proper velocity link is challenging
- The best suitable Lagrange point in the departure system is the L2 point, limiting the velocity build-up during departure phase
- The introduction of a double-sided reflective sail did not prove to have any benefit over a one-sided sail in the current methodology

Questions?

Limitations

- Missing/uncertain data about Alpha Centauri
- Sail degradation over time
- Sail technology
- Suitable optimization tool

