

Momentum Management Strategies for Solar Cruiser and Beyond

John Inness NASA MSFC ISSS 2023

Solar Cruiser ADCS Design

Solar Cruiser featured reaction wheels as the primary means of attitude control with RCDs, AMT, and IFMs for momentum management

Disturbance Torques Overview

 During the sailcraft's flight, solar radiation pressure builds up momentum from imparting an unequal force on the sail

Disturbance Torques Overview

Momentum Management

 To control the attitude of the sailcraft, reaction wheels are used which have a finite momentum capability

Active Mass Translator (Pitch/Yaw)

 The AMT moves the center of mass of the spacecraft to "trim" the spacecraft

Active Mass Translator (Pitch/Yaw)

Reflectivity Control Devices (Roll)

 RCD's work with a section of the sail that the opacity can be controlled. This change in opacity changes the reflectivity of the sail and induces an opposite moment to the saturation

Reflectivity Control Devices (Roll)

Reaction Control System Thrusters

RCS Balance Challenge

 Same design principle as RCD's but using thrusters to create the opposite moment

Active Clock (Roll) Control

 Active clock control steps through different clock angles in order to minimize or zero the momentum build up in the roll axis

Sailcraft Control Vanes

 Control vanes mounted at the tips of the sailcraft can actuate and create an opposing moment to desaturate the reaction wheels

Concept art for a Hailey's Comet rendezvous solar sail featuring control vanes

Roll Momentum Management Summery

Roll Momentum Management Actuator	Pros	Cons
Reflectivity Control Devices	Low mass, volume, and power requirements	Not flight proven and still under active development
Reaction Control System Thrusters	Commercial offerings readily available	Systems level challenges such as thermal constraints
Active Clock Control	Easily implemented as part of the ADCS design	Potential for no zero- crossing of disturbance torques
Control Vanes	Proven principle, has been flight-proven	Challenges with implementing into a sailcraft

- Momentum management is a crucial part of a sailcraft's ADCS design which ensures controllability throughout a mission
- One solution does not fit all momentum management needs, Solar Cruiser utilizes three different roll momentum management actuators to manage roll momentum and the AMT to manage pitch/yaw momentum

