

James Watt School of Engineering 6th June 2023 6th International Symposium on Space Sailing

Space and Exploration Technology Group

SOLSPACE Solar Reflectors: Commonalities with Solar Sailing

lain Moore, Onur Çelik, Temitayo Oderinwale, Litesh Sulbhewar, Andrea Viale

and Colin R. McInnes

The Team!

James Watt School of

Engineering

Principle investigator	– Prof Colin R. McInnes
Orbital dynamics lead	– Dr Onur Çelik
Attitude control lead	– Dr Iain Moore (previously Dr Andrea Viale)

Structures lead – Dr Litesh Sulbhewar

Energy, economics and regulatory lead – Dr Temitayo Oderinwale

-

James Watt School of Engineering

SOLSPACE: INTRODUCTION

University of Glasgow

Introduction

- Solar Eldefagynsuprontole capaterabrue esergy
 Solar Eldefagynsuprontole capaterabrue esergy
 Solar Eldefagynsuprontole capaterabrue esergy
- applitation days
 applitation days
- By Bit of get and the set of get the system of the system of the system of the system of the system.
- Methansik vearly productive hours of Electricity generation with natynig loss and in a nonration of the production in a production overlap to lay a fertile ground for development of such a project
- [1] IEA (2022), Solar PV, IEA, Paris https://www.iea.org/reports/solar-pv, License: CC BY 4.0

Video credit: Dr Andrea Viale

James Watt School of Engineering

SOLSPACE: ORBITAL DYNAMICS

Juniversity of Glasgow

Space and Exploration Technology Group

James Watt

Engineering

School of

 Orbit design essentially seeks to maximise the quantity of energy delivery per day to multiple solar power farms

Orbital Dynamics

- Polar Sun-synchronous orbits typically provide global accessibility to solar power farms [1,2]
- Alternative reflector concepts available with displaced non-Keplerian orbits by using solarradiation pressure [3]

[1] Çelik, O., Viale, A., Oderinwale, T., Sulbhewar, L. and McInnes, C.R. (2022). Enhancing terrestrial solar power using orbiting solar reflectors. Acta Astronautica, 195, pp.276-286.

[2] Viale, A., Çelik, O., Oderinwale, T., Sulbhewar, L., & McInnes, C. R. (2023). A reference architecture for orbiting solar reflectors to enhance terrestrial solar power plant output. Advances in Space Research (under review)

[3] Çelik, O., & McInnes, C. R. (2022). Families of displaced non-keplerian polar orbits for space-based solar energy applications. In 73rd International Astronautical Congress (IAC 2022). Paris, France: IAF. Paper no. IAC-22-C1.IP.37.x69012.

10000

5000

0

-5000

-10000

-10000

-5000

Y [km]

5000

10000

10000

Z [km]

1-day propagated orbit in inertial frame

Orbital Dynamics

Space and Exploration Technology Group

James Watt

Engineering

School of

- A high-fidelity energy delivery model is developed, including time-dependent geometrical and atmospheric losses [1]
- An optimal altitude can be found for a given ground target size [1]

[1] Çelik, O., & McInnes, C. R. (2022). An analytical model for solar energy reflected from space with selected applications. Advances in Space Research, 69, 647–663.

James Watt School of Engineering

SOLSPACE: ATTITUDE CONTROL

University of Glasgow

Space and Exploration Technology Group

James Watt School of Engineering

Attitude Control

- Objective is to deliver maximum possible energy to the solar PV farm. Figure taken from Ref. [1]
- Control actuation via 4 Control Moment Gyros (CMGs)
- Trade-off showed high power demand from reaction wheels as compared with CMGs [2,3]
- CMGs sized to max Starship fairing radius (6.5 m)
- CMGs of this size, can control hexagonal reflector of 250 m side length [1]
- Can achieve slew rates up to 0.7 deg/s

[1] A. Viale, O. Çelik, T. Oderinwale, L. Sulbhewar, C. R. McInnes, A reference architecture for orbiting solar reflectors to enhance terrestrial solar power plant output, Advances in Space Research (Accepted)"

[2] Andrea Viale, Colin R. McInnes, *Attitude control actuator scaling laws for orbiting solar reflectors*, Advances in Space Research, Volume 71, Issue 1, 2023, Pages 604-623, ISSN 0273-1177

[3] Hedgepeth, J. M., Miller, R. K., and Knapp, K., "Conceptual design studies for large free-flying solar-reflector spacecraft," NASA Contractor Report, 3438, 1981.

University of Glasgow

Attitude Control

Space and Exploration Technology Group

- When tracking a PV farm, primary constraint requires z-axis to point such that reflected light guided to target
- When not tracking, moves to idle phase where reflector is edge-on to Sun, to prevent stray light.
 Primary constraint is x-axis towards Sun.
- Pointing error analysis for rigid and flexible body currently underway
- Continuing work looking at energy delivery losses due to pointing errors (see you at the IAC!)

James Watt

School of Engineering

SOLSPACE: STRUCTURAL CONSIDERATIONS

Structural considerations

James Watt School of Engineering

Space and Exploration Technology Group

- A modular approach is proposed to construct, in principle, an arbitrary large structure.
- A hexagonal shaped mirror is constructed using a number of individual tensioned planes of equilateral triangles, connected at corners. The triangles will support the stretched reflecting film. A metalized lightweight thin polyimide film is used as reflective surface [1].

[1] O. Çelik, A. Viale, T. Oderinwale, L. Sulbhewar, C. R. McInnes, Enhancing terrestrial solar power using orbiting solar reflectors, Acta Astronautica 195 (2022) 276–286."

Structural considerations

James Watt School of Engineering

Space and Exploration Technology Group

- The present design is modified to meet the areal density constraints for the gossamer structure.
- Diagonal of the hexagon are strengthened by employing truss beam structure and are connected at the centre using a central joint. Cross bars support the reflector film.
- A lightweight Kapton[™] film is used as the reflecting material while lightweight composites for the support structure.
- The size of the reflector is governed by the control capacity of CMGs employed. A typical design with 250 m side of hexagon and 5 levels is presented in Ref. [1].
- Apart from modularity, this design facilitates on-orbit assembly, standardized quantity production, ease of manufacturing, easy maintenance and prevents the tear propagation. And above all, this can be achieved using present day technology.

[1] A. Viale, O. Çelik, T. Oderinwale, L. Sulbhewar, C. R. McInnes, A reference architecture for orbiting solar reflectors to enhance terrestrial solar power plant output, Advances in Space Research (Accepted)"

James Watt

School of Engineering

DEVELOPMENT SYNERGIES: IN-ORBIT MANUFACTURING

In-Orbit Manufacturing

- Challenge to deploy such a large structure in-orbit.
- Ability to manufacture in-orbit would be gamechanger for both reflector and also control actuators.
- SpiderFab[™] provided a means by which in space structures could be assembled [1]. Follow-on MakerSat will launch in 2025 on OSAM-1.
- Redwire Space developing the Archinaut[™] in-orbit 3D printer [2].

[1] R. P. Hoyt, Spiderfab: An architecture for self-fabricating space systems, in: AIAA Space 2013 conference and exposition, 2013, p. 5509.

[2] E. R. Joyce, M. Fagin, P. Shestople, M. P. Snyder, S. Patane, Made in space archinaut: Key enabler for asteroid belt colonization, in: AIAA SPACE and Astronautics Forum and Exposition, 2017, p. 5364.

Image credit: RethenseUsplanceted/NASA

James Watt

School of Engineering

SOLAR SAILING: ADDITION OF A SCIENCE PAYLOAD

SOLSPACE Reflector as a Solar Sail

University of Glasgow

Space and Exploration Technology Group

James Watt

School of Engineering

SOLSPACE 250 m reflector characteristic acceleration, with reflector mass = 3051.5 kg

Addition of a science payload

Space and Exploration Technology Group

University

Glasgow

James Watt

Engineering

School of

Effect of additional mass on 250 m hexagonal sail performance, with sail mass = 3051.5 kg

Approximate time to Earth escape

$$\tau = \frac{2805}{\sqrt{637}}$$
 [1]

- *h* is the initial orbit altitude [km]
- β is the sail lightness number
- From 900 km orbit, with science payload of 200 kg:

$$\tau = 430.52$$
 days

 From Earth escape, approx. 250 days to transfer to Mercury [2].

[1] C. R. McInnes, Solar Sailing: Technology, Dynamics and Mission Applications. Chichester: Springer-Praxis, 1999.

[2] B. Dachwald, (2004). Minimum Transfer Times for Non-perfectly Reflecting Solar Sailcraft. Journal of Spacecraft and Rockets, 41, 693-695.

1

Addition of a science payload

- The SOLSPACE project envisages large constellations of OSRs in orbit, servicing multiple solar PV farms around the globe.
- Given the large number of reflectors being constructed, the cost to purchase a single reflector from this large production run would be relatively small, compared with developing and manufacturing a dedicated platform for a single task.

James Watt School of Engineering

SOLAR SAILING: NON-TERRESTRIAL REFLECTORS

Non-Terrestrial Reflectors

Space and Exploration Technology Group

James Watt

Engineering

School of

- The quantity of energy delivery is higher on the Moon and Mars than on the Earth due to [1]:
 - Absence of (for Moon) and thinner (for Mars) atmosphere
 - Smaller size of the Moon and Mars, which results in slower orbits, longer pass duration and energy delivery
 - Angle subtended by the Sun is smaller at Mars, resulting in a smaller solar image, higher energy density
 - This does not consider finite PV farm size, just projected solar image.

Total Delivered energy ($D_M = 1 \text{ km}, \delta = 0^o$)

[1] Çelik, O., & McInnes, C. R. (2022). An analytical model for solar energy reflected from space with selected applications. Advances in Space Research, 69, 647–663.

Non-Terrestrial Reflectors

University of Glasgow James Watt School of Engineering

Space and Exploration Technology Group

[1] Çelik, O., & McInnes, C. R. (2022). An analytical model for solar energy reflected from space with selected applications. Advances in Space Research, 69, 647–663.

 When no atmosphere is considered, these results are scalable across the solar system [1], for example:

Energy delivery may be higher at Ceres than that of the Earth beyond ~300 km altitude, and than that of Venus beyond ~700 km

$$\kappa = \frac{1}{\rho_{sun}^2} \sqrt{\frac{(R+h)^3}{M}} \beta = \frac{1}{\rho_{sun}^2} \sqrt{\frac{(R+h)^3}{M}} \arccos \frac{R}{R+h}$$

James Watt School of Engineering

SUMMARY

Summary

- SOLSPACE envisages large OSRs in Earth orbit which can augment the productivity of terrestrial solar PV farms.
- A reference architecture has been presented in the literature for such a system.
- Ongoing work will establish effects of flexible structure, pointing errors on the system performance.
- Laboratory scale testing to begin in late 2023.
- SOLSPACE and solar sailing would mutually benefit from further advances in in-orbit manufacturing.
- Each reflector can be adapted to become a high-performance sail and perform science missions, either at the Earth or another body.
- Alternatively, reflectors can be sent throughout the solar system, to provide their services in support of non-terrestrial missions/infrastructure.

Space and Exploration Technology Group

Thank you

James Watt School of Engineering

DEVELOPMENT SYNERGIES: ATTITUDE CONTROL ACTUATORS

James Watt School of Engineering

James Watt School of Engineering

Attitude Control Actuators

Space and Exploration Technology Group

- Inertia scales with fourth power of reflector side length.
- As size of reflector increases, there will be large increase in size of actuators required to provide the required torques.
- For given torque requirements, CMG required mass approx. 5.7 times higher than reaction wheels [1].

[1] Andrea Viale, Colin R. McInnes, *Attitude control actuator scaling laws for orbiting solar reflectors,* Advances in Space Research, Volume 71, Issue 1, 2023, Pages 604-623, ISSN 0273-1177

Attitude Control Actuators

School of

Engineering

University

Glasgow

- For very large reflectors, wheel radius becomes excessive for ${m_w}/{m_r} < 1$.
- For demanding slew manoeuvres, SRPbased actuation cannot provide required torques to very large structures [1].
- Large sails and SOLSPACE reflectors would mutually benefit from advances in large actuators.

[1] Andrea Viale, Colin R. McInnes, *Attitude control actuator scaling laws for orbiting solar reflectors,* Advances in Space Research, Volume 71, Issue 1, 2023, Pages 604-623, ISSN 0273-1177