LightSdil 2 Orbit Evolution and Attitude Control

International Space Sailing Symposium Justin R. Mansell June 5, 2023

LightSail 2 Extended Mission Flight Team

Dr. Justin R. Mansell Flight Mechanics Post Doctoral Researcher Jet Propulsion Laboratory

50,000+ Members and Donors The Planetary Society

Dr. John Bellardo Telecom/Software Professor Cal Poly San Luis Obispo

Barbara Plante Attitude Control Engineer Rogue Space Systems

Dr. Bruce Betts Chief Scientist & LightSail Program Manager The Planetary Society

Dr. David A. Spencer LightSail Project Manager Mission System Manager, Mars Sample Return Jet Propulsion Laboratory

The LightSail 2 Mission

- LS2 has been at ISSS before...
- Second CubeSat in a pair of crowd-funded solar sail technology demonstrations
- <u>Main objective</u>: Demonstrate controlled solar sailing using a CubeSat
- Previous presentations reviewed performance during the first year, but some of the most exciting results occurred during the extended mission:
 - Period of net orbit raising
 - Behavior during deorbit
- This talk will present the orbit evolution and attitude performance over the full mission and discuss how it changed in response to improvements and anomalies

LS2 Mission Timeline

LIGHTSAIL

Launch	23-Jun-2019
Sail Deploy	23-Jul-2019
Mission Success	31-Jul-2019
Extended Mission	31-Jul-2020
Deorbit	16-Nov-2022
Time on orbit	1242 days

Overview

The LightSail CubeSats

			LIGHTSAIL 2
SIZE	BOOM LENGTH	TOTAL SAIL AREA	SIZE REFERENCE
5.6 x 5.6 m	4 m	32 m²	Boxing Ring
(18.4 x 18.4 ft)	(13 ft)	(344 ft ²)	0 0
			SAIL DEPLOYMEN
PROPULSION			4 cobalt alloy booms
Sails have 'rip-stop' seams every few cm to prevent tear spreading from space debris			On-board motor unwinds each arm like a tape measure
Sail thickness: 4.5 microns, less than the width of a human hair			·r
ACCELERATION	A Past		- MI
0.058 mm/s ²	Stand Stand		8.A ft
	TANZ.	And I have	
		5.6 m (18.4 ft)	

THE PLANETARY SOCIETY

Comparison of Solar Sails 0.07

Opportunities:

- Highest characteristic acceleration of any solar sail deployed to-date
- First 3-axis stabilized sail with active attitude control

Challenges:

4

- Sailing in Earth orbit
- Low control authority relative to moments of inertia and environment
- Budget COTS components

LIGHTSAIL

Overview

Overview

ADCS Overview

- 2 Magnetometers
- 5 Coarse sun sensors
- 3 Mainboard gyros
- 3 Precision (PIB) gyros
- 1 Momentum wheel
- 3 Torque rods
- 2 Cameras
- 5 Control modes

Overview

ADCS Overview

- 5 Control modes
 - Mode 0: Detumble
 - Mode 1: Magnetic alignment
 - Mode 2: Solar sailing
 - Mode 3: No torques
 - Mode 4: Sun pointing (introduced on orbit)
 - Mode 5: Velocity pointing (rarely used)

7

Solar Sailing Mode

- Slew between "On" and "Off" attitudes
- Solar pressure contributes an increase in energy that can oppose losses due to atmospheric drag

8

Assessing Attitude Performance

- First, need to assess the accuracy of the onboard attitude estimate
- Estimate performed by an extended Kalman filter, but affected by
 - Time varying noise statistics and biases
 - Errors in spacecraft clock or propagated position
- We developed a "quaternion consistency check" to verify that the filtered attitude estimate did not contradict the raw magnetometer measurements

LIGHTSAIL 2

Attitude Knowledge History

Attitude Knowledge

9

Attitude Knowledge

10

Gyro Re-calibration

- ADCS performance degraded gradually throughout 2020
- January 2021: no recognizable attitude control
- February 2021: derived rates from magnetometers and subtracted offset from primary gyros
- Result: successful control returned almost immediately

Assessing Attitude Control

 Control performance assessed by comparing downlinked quaternions to pointing commands

11

Attitude Control History

Orbit History

• Source of orbit knowledge: Two-line elements

During 2021, a net gain of 758 meters was achieved July-August, coincident with a period of good sail control

Orbit Raising

- Directly correlating sail control with orbit changes is difficult due to the limitations of the SGP4 model on which TLEs are based
- However, B* < 0 shows that the best fit for the orbit is one which is rising with time

LIGHTSAIL

Orbit Evolution

Impact of Solar Activity

Time On Orbit

- Solar sailing over the mission extended LS2's orbit lifetime
- We used two NASA propagators to model the decay without solar sailing and found deorbits >10 months earlier than actual
 - Constant C_d assumed, but reference areas scaled by $2/\pi$ to represent the long-term average of a tumbling sail

Actual deployed sail area unknown due to partially collapsed boom

Assuming a halflength boom on one side bounds uncertainty

Propagator	Full Sail Area	0.75 Sail Area
DAS	10-Jul-2021 (718 days)	02-Jan-2022 (894 days)
GMAT	06-Nov-2020 (471 days)	21-Feb-2021 (579 days)

Actual deorbit date: late 16 or 17-Nov-2022 (1211 days after sail deploy)

20

Deorbit

- Final week: LS2 placed in no-torques mode to observe uncontrolled attitude rates
- Rates much higher than any other time during mission
- No evidence for aerodynamic stabilization

Deorbit

Deorbit Reconstruction

- We used a commercial 6DOF drag sail simulator to reconstruct final TLE to deorbit
- Observed rates exceed what can be modeled by a fully deployed sail, but not one with a half-length boom
- Conclusion: no evidence that sail had collapsed by the last telemetry

Conclusions

- LightSail 2 demonstrated control of a 3-axis stabilized CubeSat solar sail
- On-orbit gyro recalibration
 enhanced sail control
- Improved control enabled a period of sustained orbit raising
- LS2's duration on orbit was increased by solar sailing
- No evidence of passive stabilization or sail collapse prior to deorbit

LIGHTSAIL

Final Image

Acknowledgements

- Donors and members of The Planetary Society
- University NanoSat Program
- Air Force Research Laboratory
- Prox-1 team
- U.S. Department of Defense Space Test Program
- NASA Near Earth Asteroid Scout team
- Purdue Space Flight Projects Laboratory

Conclusions

Questions

LIGHTSAIL 2

1.000

Backup Slides

*Eccentricity exaggerated for visualization

Pre-deployment Sail Control

26