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Sinusoidal Alternating Waveforms

Sinusoidal alternating waveform is the time-varying voltage that is
commercially available in large quantities and is commonly called the ac
voltage. Each waveform in Fig. 13-1 is an alternating waveform available
from commercial supplies. The term alternating indicates only that the
waveform alternates between two prescribed levels in a set time sequence.
To be absolutely correct, the term sinusoid, square-wave, or triangular
must be applied.

| Key Words: Sinusoidal Waveform, Frequency, Period, Phase, Peak, RMS, ac Meter
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Figure 13.1 Alternating waveforms.
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Sinusoidal ac Voltage Generation

Sinusoidal ac voltages are available from a variety of sources. The most common source is the
typical home outlet, which provides an ac voltage that originates at a power plant. In each case,
an ac generator, as shown in Fig. 13-2(a), is primary component in the energy-conversion
process. For isolated locations where power lines have not been installed, portable ac generators
[Fig. 13-2(b)] are available that run on gasoline. The turning propellers of the wind-power station
[Fig. 13-2(C)] are connected directly to the shaft of ac generator to provide the ac voltage as one
of natural resources. Through light energy absorbed in the form of photons, solar cells [Fig. 13-
2(d)] can generate dc voltage then can be converted to one of a sinusoidal nature through an
inverter. Sinusoidal ac voltages with characteristics that can be controlled by the user are
available from function generators, such as the one in Fig.13-2(e).

Figure 13.2 Various sources of ac power; (a) generating plant; (b) portable ac generator; (c) wind-
ower station; (d) selar panel; (e) function generator.

Sinusoidal ac Voltage Definitions

ET242 Cirewi| FIGURE 13.3  Important parameters for a sinusoidal voltage.

Waveform: The path traced by a quantity, such as the voltage in Fig. 13-3, plotted
as a function of some variable such as time, position, degrees, radiations,
temperature, and so on.

Instantaneous value: The magnitude of a waveform at any instant of time; denoted by
lowercase letters (e,, e, in Fig. 13-3)

Peak amplitude: The maximum value of a waveform as measured from its
average, value, denoted by uppercase letters. For the waveform in Fig. 13-3, the
average value is zero volts, and E,, is defined by the figure.

Peak-to-peak value: Denoted by £, , or V,, (as shown in Fig. 13-3), the full
voltage between positive and negative peaks of the waveform, that is, the sum of
the magnitude of the positive and negative peaks.

Periodic waveform: A waveform that continually repeats itself after the same time
interval. The Fig. 13-3 is a periodic waveform.

Period (T): The time of a periodic waveform.

Cycle: The portion of a waveform contained in one period of time. The cycles
within T, T, and T} in Fig. 13-3 may appear different in Fig. 13-3, but they are all

bounded by one neriod of time and therefore cah’qf-‘y the definition of a cvele.
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Frequency (f): The number of cycles that occur in 1 s. The frequency of the
waveform in Fig. 13-5(a) is | cycle per second, and for Fig. 13-5(b), 2% cycles per
second. If a waveform of similar shape had a period of 0.5 s [Fig. 13-5 (¢)], the
frequency would be 2 cycles per second. 1 hertz (Hz) = 1 cycle per second (cps)
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Ex. 13-1 For the sinusoidal waveform in Fig. 13-7.
a. What is the peak value?
b. What is the instantaneous value at 0.3 s and 0.6 s?
c. What is the peak-to-peak value of the waveform?
d. What is the period of the waveform?
e. How many cycles are shown?
f. What is the frequency of the waveform?

FIGURE 13.7
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Frequency

Since the frequency is inversely related to the period—that is, as one
increases, the other decreases by an equal amount-the two can be related by
the following equation:

_| f=Hz
7 =second (s)

EX. 13-2 Find the periodic waveform with a frequency of
a. 60 Hz b. 1000Hz

ET 242 Circuit Analysis II - Sinusoidal Alternating Waveforms Boylestad 9

Ex. 13-3 Determine the frequency of the waveform in Fig. 13-9.

The Sinusoidal Waveform
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FIGURE 13.12 The sine wave is the only
alternating waveform whose shape is not
altered by the response characteristics of a
pure resistor, indicator, or capacitor.
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The unit of measurement for the horizontal axis can be time, degree, or radians.
The term radian can be defined as follow: If we mark off a portion of the
circumference of a circle by a length equal to the radius of the circle, as shown in
Fig. 13-13, the angle resulting is called 1 radian. The result is

FIGURE 13.13 Defining the radian.

V4
Radians = x (degrees,
(180,,) (degrees)

o

Degrees =

x (radians)

For comparison purposes, two sinusoidal
voltages are in Fig. 13-15 using degrees
and radians as the units of measurement
for the horizontal axis.

ET 242 Circuit Analysis I — Sinusoidal Alternating | FIGURE 13.14 There are 2 radian in one full circle of 360°.

¥ Otting a sine
- wave versus (a) degrees and (b)

In Fig. 13-16, the time required to complete one
revolution is equal to the period (7) of the
sinusoidal waveform. The radians subtended in
this time interval are 2. Substituting, we have

o = 271/T or 2zf (rad/s)

FIGURE 1317 Demonstrating the |
effect of w on the frequency and

encrating a Sinusol

waveform through the vertical projection of a

Ex. 13-4 Determine the angular velocity of a sine wave having a frequency of 60 Hz.

| @ =2zf = (2m)(60 Hz) = 377 rad/s

Ex. 13-5 Determine the frequency and period of the sine wave in Fig. 13-17 (b).
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Ex. 13-6 Given w = 200 rad/s, determine how long it will take the sinusoidal
waveform to pass through an angle of 90°. General Format for the Sinusoidal Voltage or Current

FIGURE 13.18 Basic sinusoidal function.

I e
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Phase Relations

Ex. 13-11 Given i = 6x10-3 sin 100t , determine i at t = 2 ms.

FIGURE 13.27 Defining the phase shift for a FIGURE 13.28 Defining the phase shift for a
sinusoidal function that crosses the horizontal axis sinusoidal function that crosses the horizontal axis
with a positive slone hefore 0° with a positive slope after 0°




If the waveform crosses the horizontal axis with a positive-going slope 90° (w/2)
sooner, as shown in Fig. 13-29, it is called a cosine wave; that is

sin (ot + 90°)=sin (vt + n/2) = cos nt
or sin wt = cos (ot — 90°) = cos (vt — 7/2)

ET 242 Circuit Analysis II - Sinusoidal Alternating Waveforms Boylestad

waveforms. Oscilloscopes have the dual-trace option, that is, the ability to show two
waveforms at the same time. It is important that both waveforms must have the same
frequency. The equation for the phase angle can be introduced using Fig. 13-37.

An oscilloscope can also be used to make phase measurements between two sinusoidal

Ex. 13-13 Find the period, frequency, and peak value of the sinusoidal waveform
appearing on the screen of the oscilloscope in Fig. 13-36. Note the sensitivities
provided in the figure.

One cycle span 4 divisions . Therefore , the period is

T =4div.(50_ﬂsj =200 ps
div

and the frequency is
1 1

=_= =5 kH:

/=1 = 20010705 =K

FIGURE 13.36
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Average Value

The concept of the average value is an important one in most technical fields. In

Fig. 13-38(a), the average height of the sand may be required to determine the

volume of sand available. The average height of the sand is that height obtained if

the distance from one end to the other is maintained while the sand is leveled off, as

shown in Fig. 13-38(b). The area under the mound in Fig. 13-38(a) then equals the
area under the rectangular shape in Fig. 13-38(b) as determined by 4 =b X h.

FIGURE 13.38 Defining average value. ‘ FIGURE 13.39 Effect of FIGURE 13.40 Effect of depressions
| distance (length) on average value. | (negative excursions) on average value.




Ex. 13-14 Determine the average value of the waveforms in Fig.13-42.

FIGURE 13.42

a. By inspection, the area above the axis equals the area below over one cycle,
resulting in an average value of zero volts.

)= 10 V) ms)+ (=10 V)(1 ms) =9=0 v
2 ms 2

G (average value

Ex. 13-15 Determine the average value of the waveforms over one full cycle:
a. Fig. 13-44.
b. Fig. 13-45
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Effective (71715) Values

This section begins to relate dc and ac quantities with respect to the power delivered to
a load. The average power delivered by the ac source is just the first term, since the
average value of a cosine wave is zero even though the wave may have twice the
frequency of the original input current waveform. Equation the average power
delivered by the ac generator to that delivered by the dc source,

‘Which, in words, states that

The equivalent dc value of a sinusoidal current or voltage is 1/2 or 0.707 of its
peak value.

o e e e o T T .

. Similarly,
" 7
NE
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Ex. 13-20 Find the rms values of the sinusoidal waveform in each part of Fig. 13-58.

FIGURE 13.58

Ex. 13-21 The 120 V dc source in Fig. 13-59(a) delivers 3.6 W to the load.
Determine the peak value of the applied voltage (£,,) and the current (Z,,) if the ac
source [Fig. 13-59(b)] is to deliver the same power to the load.

ET 242 Cireuit Analysis II - Sinusoidal Alternating Waveforms Boylestad 28
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Ac Meters and Instruments

It is important to note whether the DMM in use is a true rms meter or simply meter
where the average value is calculated to indicate the rms level. A true rms meter reads
the effective value of any waveform and is not limited to only sinusoidal waveforms.

Fundamentally, conduction is permitted through the diodes in such a manner as to
convert the sinusoidal input of Fig. 13-68(a) to one having been effectively “flipped

over” by the bridge configuration. The resulting waveform in Fig. 13-68(b) is called a
full-wave rectified waveform.

ET 242 Circuit Analysis Il - Sinusoidal Alternating Waveforms Boylestad
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Forming the ratio between the rms and dc levels results in

Ve _ 07070, _ 1,

rms

V., 0637V,
_ ©V)1s)+BV)1s)—3BV)(s)

. ] ¢
3s

8V oy
3
E—
HW 13-42 Find the rms value of the following sinusoidal waveforms:
a. v=140sin(377¢ + 60°) a. V, =0.7071(140V)=98.99 1
b. i=6x107sin(271000¢) b. 1, =0.7071(6mA)=4.24 mA
c. v=40x10"°sin(275000¢ +30°) c. V., =07071(40 V') =28.28 uV
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INTRODUCTION

The response of the basic R, L, and C elements to a sinusoidal voltage and
current are examined in this class, with special note of how frequency
affects the “opposing” characteristic of each element. Phasor notation is
then introduced to establish a method of analysis that permits a direct
correspondence with a number of the methods, theorems, and concepts
introduced in the dc chapter.

DERIVATIVE

waveform that have maximum and minimum
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The peak value of the cosine wave is directly related to the frequency of the
original waveform. The higher the frequency, steeper the slope at the horizontal
axis and the greater the value of dx/dt, as shown in Fig. 14-3 for two different
frequencies. In addition, note that

the derivative of a sine wave has the same period and frequency as the original
sinusoidal waveform.

For the sinusoidal voltage
e()=E, sin(wt £ 0)

The derivative can be found
directly by differentiation to
produce the following:

die()ydt = WE,, cos( Wt + 6)
=2xfE, cos(wt+6)

Response of Resistor to an ac Voltage or Current

For power-line frequencies, resistance is, for all practical purposes, unaffected by
the frequency of the applied sinusoidal voltage or current. For this frequency

region, the resistor R in Fig. 14-4 can be treated as a constant, and Ohm’s law can
be applied as follow. For v =V, sin wt,

ET 242 Circuit Analysis — Response of Basic Elements Boylestad 5

A plot of v and 7 in Fig. 14-5 reveals that

For a purely resistive element, the voltage across
and the current through the element are in phase,
with their peak values related by Ohm’s law.
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Response of Inductor to an ac Voltage or Current

Frequency (f): The number of cycles that occur in 1 s. The frequency of the
waveform in Fig. 13-5(a) is 1 cycle per second, and for Fig. 13-5(b), 2 cycles per
second. If a waveform of similar shape had a period of 0.5 s [Fig. 13-5 (¢)], the
frequency would be 2 cycles per second. 1 hertz (Hz) = 1 cycle per second (cps)

For the series configuration in Fig. 14-6, the voltage v,,,.,, of the boxed-in element
opposes the source e and thereby reduces the magnitude of the current i. The magnitude
of the voltage across the element is determined by the opposition of the element to the
flow of charge, or current i. For a resistive element, we have found that the opposition
is its resistance and that v and i are determined by v iR.

clement clement

cichincaare : cu oo o o c 1 1o ta

The inductance voltage is directly related to the frequency and the inductance of the
coil. For increasing values of fand L in Fig. 14-7, the magnitude of v, increases due
the higher inductance and the greater the rate of change of the flux linkage. Using
similarities between Figs. 14-6 and 14-7, we find that increasing levels of v, are
directly related to increasing levels of opposition in Fig. 14-6. Since v, increases with
both @ (= 27f) and L, the opposition of an inductive element is as defined in Fig. 14-7.

WaveIOTTIT
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Response of Capacitor to an ac Voltage or Current

ET 242 Circuit Analysis — Response of Basic Elements. Boylestad 11

The current of a capacitor is therefore directly to the frequency and capacitance of
the capacitor. An increase in either quantity results in an increase in the current of
the capacitor. For the basic configuration in Fig. 14-10, we are interested in
determining the opposition of the capacitor. Since an increase in current
corresponds to a decrease in opposition, and i_is proportional to @ and C, the
opposition of a capacitor is inversely related to @ and C.

ET 242 Circuit Analysis — Response of Basic Elements




A plot of v and i in Fig.14-12 reveals that

for a capacitor, i leads v, by 90 °

FIGURE 14.12 The current of a purely capacitive
element leads the voltage across the element by 90°.

ET 242 Circuit Analysis — Response of Basic Elements
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a. i=10sin377t

EX. 14-3 The current through a 0.1 H coil is provided. Find the sinusoidal
expression for the voltage across the coil. Sketch the curves for v and i curves.

EX. 14-1 The voltage across a resistor is indicated. Find the sinusoidal expression
for the current if the resistor is 10 Q. Sketch the curves for v and i.

a. v=100sin377t

b. v =25sin(377t + 60 )

FIGURE 14.13

b 1, =Yn BV _ 554
R 10Q

(v and i are in phase ),

resulting  in
i=25sin( 377 t+60°)

L]

Ex. 14-2 The current through a 5 Q resistor is given. Find the sinusoidal expression
for the voltage across the resistor for i = 40sin(377t + 30 ).

V,=1,R=(404)(52) =200 (vand i are in phase), resulting in
v = 200sin(377t + 30°)

ET 242 Circuit Analysis — Response of Basic Elements B0Y! 14

EX. 14-4 The voltage across a 0.5 H coil is provided below. What is the sinusoidal
expression for the current? v =100 sin 20t

b. i=7sin(377t— 709

a. X, = w, =377 rad/s)(0.1 H) = 37.7 £
V,=1X =(10A4)(37.7 2) =377V

and we know that for a coil v leads i by 90°.
Therefore,

v =377 sin(377t + 90 9

FIGURE 14.15

EX. 14-5 The voltage across a / (/F capacitor is provided below. What is the
sinusoidal expression for the current? Sketch the v and i curves. v =30 sin 400t

b. X, =w, = (377 rad/s)(0.1 H) = 37.7 2
V,=1X,=(74)37.7 2 =263.9V

and we know that for a coil v leads i by 90°.
Therefore,

Vv'=263.9sin(377t—70° + 909

and v =263.9sin(377t + 20

ET 242 Circuit Analysis — Response of Basic Elements

FIGURE 14.16
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Ex. 14-6 The current through a 100 UF capacitor is given. Find the sinusoidal
expression for the voltage across the capacitor. i=40sin(500t+ 60°)

EX. 14-7 For the following pairs of voltage and currents, determine whether the
element involved is a capacitor, an inductor, or a resistor. Determine the value of C,
L, or R if sufficient data are provided (Fig. 14-18):.

a. v=100sin(wt+40°) i=20sin(wt 40°
b. v=1000sin(377t + 10°) i=5sin(377t—80°)
c. v=>500sin(157t+30°) i=lIsin(157t+120°)
d. v=150cos(wt+20°) i=Ssin(wt+110°)
ET 242 Circuit Analysis — Response of Basic Elements Boylestad 17

Frequency Response of the Basic Elements

Thus far, each description has been for a set frequency, resulting in a fixed level of
impedance foe each of the basic elements. We must now investigate how a change
in frequency affects the impedance level of the basic elements. It is an important
consideration because most signals other than those provided by a power plant
contain a variety of frequency levels.

Ideal Response

ET 242 Circuit Analysis — Response of Basic Elements BUyTESau 9
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Since a reactance of zero ohms corresponds with the characteristics of a short circuit,
we can conclude that

at a frequency of 0 Hz an inductor takes on the characteristics of a short circuit,
as shown in Fig. 14-21.

Capacitor C : For the capacitor, the equation for the reactance

FIGURE 14.21 Effect of low and high frequencies on the circuit model of an inductor.

As shown in Fig. 14-21, as the frequency increases, the reactance increases, until it
reaches an extremely high level at very high frequencies.

at very high frequencies, the characteristics of an inductor approach those of an
open circuit, as shown in Fig. 14-21.

The inductor, therefore, is capable of handling impedance levels that cover the
entire range, from ohms to infinite ohms, changing at a steady rate determined by
the inductance level. The higher the inductance, the faster it approaches the open-
circuit equivalent.

P
24C
can be written as

1
X.f=——=k (aconstant,
of =5.a=k (aconstany)

which matches the basic format for a hyberbola |
=k

where X . is the y variable, and k a constant

ET 242 Circuit Analysis — Response of Basic Elements Boylestad
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equal to 1/(2xC)

Hyperbolas have “the shape appearing in Fig. 14-22 for two levels of capacitance.
Note that the higher the capacitance, the closer the curve approaches the vertical and
horizontal axes at low and high frequencies. At 0 Hz, the reactance of any capacitor
is extremely high, as determined by the basic equation for capacitance:

ET 242 Circuit Analysis — Response of Basic Elements Boylestad 2

The result is that

at or near 0 Hz, the characteristics of a capacitor approach those of an open
circuit, as shown in Fig. 14-23.

‘ FIGURE 14.23 Effect of low and high frequencies on the circuit model of a capacitor. ‘

HW 14-18 The current through a 10 Q capacitive reactance is given. Write the
sinusoidal expression for the voltages. Sketch the v and 7 sinusoidal waveforms on
the same set of axes.

a. i=50x10"sin ot
i=2x10"°sin( wt + 60°)

b
c. [ =-6sin(wt—30°)
d. i=3cos(wt+10°)(a Vi=IXe= (50 x 1070 AN10 Q) =05V

As the frequency increases, the reactance approaches a value of zero ohms. The
result is that

at very high frequencies, a capacitor takes on the characteristics of a short circuit,
as shown in Fig. 14-23.

It is important to note in Fig. 14-22 that the reactance drops very rapidly as
frequency increases. For capacitive elements, the change in reactance level can be
dramatic with a relatively small change in frequency level. Finally, recognize the
following:

As frequency increases, the reactance of an inductive element increases while
that of a capacitor decreases, with one approaching an open-circuit equivalent as

the other approaches a short-circuit equivalent.

ET 242 Circuit Analysis — Response of Basic Elements Boylestad 23

v = 0.5 sin(er — 90°)

b, V,=LXe= (2% 107510 Q) =20 4V
v =20 x 107° sin(wr — 30°)

c.  I=-6sin(of— 307 =6 sin{or + 150°)
Vo =IuXe=(6 ANI0) =60V
v = 60 sin(wf + 60°)

d. =3 sn(wr+ 100°)
V,=LXe=(3AN10Q)=30V
v = 30 sin(wf + 10°)

BoyTestad 2]
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A common question is, How can a sinusoidal voltage or current deliver power to
load if it seems to be delivering power during one part of its cycle and taking it
back during the negative part of the sinusoidal cycle? The equal oscillations

above and below the axis seem to suggest that over one full cycle there is no net
transfer of power or energy. However, there is a net transfer of power over one full
cycle because power is delivered to the load at each instant of the applied voltage
and current no matter what the direction is of the current or polarity of the voltage. |




ET 242 Circuit Analysis 11 - Average power & Pow Figure 14.30 Power versus time for a purely resistive load.

ET 242 Circuit Analysis Il — Average power & Power Factor

Figure14.31 Determining the power
delivered in a sinusoidal ac network.
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Ex. 14-10 Find the average power dissipated in a network whose input current and
voltage are the following:

i=5sin(wt+40°)

v =10sin(wt + 40 °)

Since v and i are in phase, the circuit appears to be purely
resistive at the input terminals. Therefore,
V1, (10V)(5A)

P =25W
2 2
or R=V—”‘=M=ZQ
I, 54
2 2
and P = st _ [(0.707)2(10V)] _osW

or P=I> R=[(0.707)(5 AT(2)=25W

ET 242 Circuit Analysis Il - Average power & Power Factor Boylestad 3

Ex. 14-11 Determine the average power delivered to networks having the following
input voltage and current:

a. v=100sin(wt+40°) i=20sin(wt+70°)

b. v=150sin(wt—70°) i = 3sin(wt—50°)

b. Vm = ISOV, 9\) = —700 and ]m =3A’ 91 = _500

0= =20°

0,-6|=|-70° - (-50°)

= |— 20°

and

P= szl n gosg = 10 112)(3 D cos(20°) = (225W(0.9397) = 211.43 W

ET 232 Circurt Analysis 11— Average power & Power Factor Buylestaa T

Power Factor

In the equation P = (V1 ./2)cos 6, the factor that has significant control over the
delivered power level is the cos&. No matter how large the voltage or current, if
cos@ = 0, the power is zero; if cos@ = 1, the power delivered is a maximum. Since
it has such control, the expression was given the name power factor and is defined
by Power factor = F_ = cos&

For a purely resistive load such as the one
shown in Fig. 14-33, the phase angle
between v and i is 0° and F,, = cos © = cos0 °
= ]. The power delivered is a maximum of Figure14.33
V,L/2)cos© = ((100V)(54)/2)(1) = 250W. Purely resistive
For purely reactive load (inductive or load with F, = 1.
capacitive) such as the one shown in Fig. 14-
34, the phase angle between v and i is 90°
and F, = cos © = cos90 °= 0. The power
delivered is then the minimum value of zero
watts, even though the current has the same

peak value as that encounter in Fig. 14-33. Figure14.34

Purely inductive

In terms of the average power and the terminal voltage and current,

Fp=00s0= -

rms= rms

The terms leading and lagging are often written in conjunction with the power factor.
They are defined by the current through the load. If the current leads the voltage
across a load, the load has a leading power factor. If the current lags the voltage
across the load, the load has a lagging power factor. In other words,

capacitive networks have leading power factor, and inductive networks have
lagging power factors.

ET 242 Circuit Analysis II — Average power & Power Factor load with F, = 1.
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EX. 14-12 Determine the power factors of the following loads, and indicate whether
they are leading or lagging:
a. Fig. 14-35 b. Fig. 14-36 c. Fig. 14-37

Figure 14.35 Figure 14.36 Figure 14.37

ET 242 Circuit Analysis Il - Average power & Power Factor Boylestad 12

Complex Numbers

In our analysis of dc network, we found it necessary to determine the algebraic
sum of voltages and currents. Since the same will be also be true for ac networks,
the question arises, How do we determine the algebraic sum of two or more
voltages (or current) that are varying sinusoidally? Although one solution would
be to find the algebraic sum on a point-to-point basis, this would be a long and
tedious process in which accuracy would be directly related to the scale used.

A complex number represents a points in a two-
dimensional plane located with reference to two
distinct axes. This point can also determine a radius
vector drawn from the original to the point. The
horizontal axis called the real axis, while the
vertical axis called the imaginary axis. Both are
labeled in Fig. 14-38.

Imaginary axis ()
+

- +

Real axis

ET 242 Circuit Analysis Il - Average power & Power Factor Boylestad | i

Figure 14.38 Defining the real and
aginary axes of a complex plane.

Two forms are used to represent a point in the plane or a radius vector drawn from
the origin to that point.

Rectangular Form

The format for the rectangular form is
C=X+Y

As shown in Fig. 14-39. The letter C

was chosen from the word “complex.”

The boldface notation is for any number

with magnitude and direction. The italic
is for magnitude only.

Ex. 14-13 Sketch the following complex numbers in the complex plane.
a. C=3+j4 b. C=0-j6 c. C=-10-20

Figure 14.39 Defining
ET 242 Circuit Analysis Il - Average power & Power Factor the rectangular form.

Figure 14.40
Example 14-13 (a)

ET 242 Circuit Analysis II — Average ppw

Figure 14.41
Example 14-13 (b)

Figure 14.42
Example 14-13 (c) 15




Polar Form

The format for the

polar form is
C=272/£6

with the letter Z chosen

from the sequence X,Y,Z.

Figure 14.43
Defining the polar
form

Figure 14.44 Demonstrating the effect of a negative sign on the polar form.

EX. 14-14 Sketch the following complex numbers

a. C=5430° b. C=7£-120° c.

in the complex plane:
C=-4.2.60°

Figure 14.45
Example 14-14 (a)

Figure 14.46
Example 14-14 (b)

Figure 14.47
Example 14-13 (c)

ET 242 Circuit Analysis 11 - Al lesfad 17

Conversion Between Forms

The two forms are related by the following equations, as illustrated in Fig. 14-48.

Polar to Rectangular
X =ZcosH
Y = Zsin6

ET 242 Circuit Analysis I1 — Average power & Power Factor

‘ Figure 14.48 Conversion between forms.

Boylestad

Ex. 14-15 Convert the following from rectangular

C=3+/4 (Fig. 14-49)

to polar form:

Figure 14.49

C=10-45° (Fig. 14-50)

EX. 14-16 Convert the following from polar to rectangular form:

ET 242 Circuit Analysis II - Average power & Power Factor Boyl

psta Figure 14.50




Ex. 14-17 Convert the following from rectangular to polar form:
=—6+,3 (Fig. 14-51)

Figure 14.51

Ex. 14-18 Convert the following from polar to rectangular form:

HW 14-31 If the current through and voltage across an element are i = 8sin(wt +
40°) and v = 48 sin(wt + 40°), respectively, compute the power by R, (V,,1,/2)cos6,
and Vlcos6, and compare answers.

C=10 - 230° (Fig. 14-52)

X =10c0s230° =-6.43
Y =10sin230° =-7.66
and C=-6.43-/7.66

ET 242 Circuit Analysis 11— Average power & Power Factor B

Figure 14.52

84

m

2
= =6Q, P=I’'R=|—=|6Q=192W
I, 84

V2
V.1

P=%cos6’ =wcoso° =192 W

V2

P=VIcosO = (ﬂj[%j cos0° =192 w

V2 \V2

v, 48V

ET 242 Circuit Analysis 1 - Average power & Power Factor Boylestad 21
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Mathematical Operations
with Complex Numbers

Complex numbers lend themselves readily to the basic mathematical operations
of addition, subtraction, multiplication, and division. A few basic rules and
definitions must be understood before considering these operations.

Let us first examine the symbol j associated with imaginary numbers,
By definition,
j=~-1 Thus, j*=-1
and ' =jj=-1j==j
with — j*=j 2 =(=1)(=1)=+1
i=J
and so on. Further,

G

ET 242 Circuit Analysis 11 - Phasors Boylestad
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Addition or subtraction cannot be performed in polar form unless
the complex numbers have the same angle @ or unless they differ
only by multiples of 180 °

ET 242 Circuit Analysis I - Phasors Boylestad

Multi p| ication: To multiply two complex numbers in rectangular form,
multiply the real and imaginary parts of one in turn by the real and imaginary parts
of the other. For example, if

C,=X,+jY, and C,=X,+/Y,
then C,-C,: X, +jY,
X, +jY,
XX, + YK,
+ XY, 7YY,
XX, + iV X + X\Y) + YiYo(-1)
and C - Co=X,X, - Y,Y) +j¥Y X, + X,Y)

In Example 14-22(b), we obtain a solution without resorting to memorizing
equation above. Simply carry along the j factor when multiplying each part of one

vector with the real and imaginary parts of the other.
5

ET 242 Circuit Analysis 11 - Phasors Boylestad 9

Ex. 14-22
a. Find C,-C, if C,=2+,3 and C,=5+,10
b. Find C,-C, if C,=-2-j3 and C,=+4—j6

a. Using the format above, we have

C.-C,=1(2)(3)- () (10)] +jI(3) (5) + (2) (10)]
=_20+j35

b. Without using the format, we obtain
-2-j3
+4—i6
—-8—j12
+j12 +218
-8 +j(-12+12)-18
and C,-C,=-26=26-180°

To multiply a complex number in rectangular form by a real number
requires that both the real part and the imaginary part be multiplied by the real
number. For example,

(10)(2+ j3) =20+ j30
and 50.£0°(0+ j6) = j300 =300.£90°

ET 242 Circuit Analysis II - Phasors Boylestad 11




Ex. 14-24
a. Find C,/C, if
b. Find C,/C, if

C,=1+j4 and C,=4+j5
C,=—4-j8 and C,=+6—jI

ET 242 Circuit Analysis I - Phasors Boylestad 12
ET 242 Circuit Anal 14

ET 242 Circuit Analysis I — Phasors

Phasors

ET 242 Circuit Analysis IT— Phasors

Boylestad 15




ET 242 Circuit Analysis 11— Phasors uoylﬁrﬁﬂ"

In the future, therefore, if the addition of two sinusoids is required, you should first
convert them to phasor domain and find the sum using complex algebra. You can
then convert the result to the time domain.

The case of two sinusoidal functions having phase angles different from 0° and 90°
appears in Fig. 14-73. Note again that the vertical height of the functions in Fig.
14-73(b) at t =0 s is determined by the rotational positions of the radius vectors in
Fig. 14-73(a).

ET 242 Circuit Analysis I - Phasors Boylestad 17

In general, for all of the analysis to follow, the phasor form of a sinusoidal voltage

or current will be
V=V/Z0 and =126

where V and I are rms value and ©is the phase angle. It should be pointed out that
in phasor notation, the sine wave is always the reference, and the frequency is not
represented.

Ex. 14-27 Convert the following from the time to the phasor domain:

Time Domain Phasor Domain

a. N2(50)sinwt 501.0°

t O 725 =49 217
EX. 14?280&7151'?61 ﬁ{g)sinusoidal expressiorw'b{'({h/e) %gﬁo%ng ;/> asors 1yf tfle
frequency is 60 Hz:

ET 242 Circuit Analysis 11 - Phasors Boylestad 18

Phasor Domain

ET 242 Circuit Analysis I - Phasors Boylestad 19



http:2.236V�63.43

Ex. 14-29 Find the input voltage of the circuit in Fig. 14-75 if

v, =50sin(377t + 30°) } - 60 H:
v, = 30 sin(377t + 609 ! i

Figure 14.75

ET 242 Circuit Analysis I - Phasors Boylestad 20

Figure 14.76

ET 242 Circuit Analysis I — Phasors

oylestad

Ex. 14-30 Determine the current 7, for the network in Fig. 14-77.

Figure 14.77

ET 2 TTCuIl Analysis 1T — Phasors, 22
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Figure 14.78
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HW 14-50 For the system in Fig. 14.87, find the sinusoidal expression for the

unknown voltage v, if .
e, =60sin(377¢ +20°)
v, = 20sin(377¢t =20°)

HW 14-51 For the system in Fig. 14.88, find the sinusoidal expression for the
unknown voltage i, if P
i, =20 %107 sin( @t + 60°)
i, =6x 10~° sin( ot — 30°)

Figure 14.87 Problem 50.

(Using peak values)

e, =V, +tv, =>v, =e, —V,
=(60V£L20°)-20VL~-20°)
=48.49 V£36.05°

and e, =46.495in(377t +36.05°)

n

ET 242 Circuit Analysis II - Phasors Boylestad 24

Figure 14.88 Problem 51.

=i, +i, =i, =i, —i,

(Using peak values) = (20 x10™° AZL60°)— (6 x10™° AL - 30°)
=20.88 x107° 4£76.70°

i, =20.88 x 107" sin(wi +76.70°)

[
| Homework 14: 39, 40, 43-45, 48, 50, 51

ET 242 Circuit Analysis II - Phasors Boylestad
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Series & Parallel ac Circuits

Phasor algebra is used to develop a quick, direct method for solving both
series and parallel ac circuits. The close relationship that exists between this
method for solving for unknown quantities and the approach used for de
circuits will become apparent after a few simple examples are considered.
Once this association is established, many of the rules (current divider rule,
voltage divider rule, and so on) for dc circuits can be applied to ac circuits.

Series ac Circuits
Impedance & the Phasor Diagram — Resistive Elements

From previous lesson we found, for the purely resistive circuit in Fig. 15-1, that v

and i were in phase, and the magnitude

]:& or V. =1 R

m m m

Figure 15:1
Resistive ac

ET 242 Circuit Analysis 11 - Sinusoidal Alternating Waveforms Bo




In Phasor form, v=V sinwt=V =VZ0°
where V =0.7077V,,,

Applying Ohm's law and using phasor algebra , we have
_Vz0°  vZ0°
_RZ0°_RZ6°

Sincei and v arein phase, the angle associated withi also must be 0°.

To satisfy this condition, 6, must equal 0°. Substituting 6, = 0°, we found
_ V00
RAO°

£(0°-6,)

I =Y s00-0 =X 100
R R

so that in the time domain, i= ﬁ(%)sm ot

Ex. 15-1 Using complex algebra, find the current 7 for the circuit in Fig. 15-2.
Sketch the waveforms of v and i.

We use the fact that 0, = 0° in the following polar format to ensure

the proper phase relationship between the voltage and current of a resistor :

Z, =RL0°

ET162 Circuit Analysis — Ohm’s Law Boylestad 4

FIGURE 15.2 ‘ ‘ FIGURE 15.3 5

Ex. 15-2 Using complex algebra, find the voltage v for the circuit in Fig. 15- 4.
Sketch the waveforms of v and i.

FIGURE 15.4
FIGURE 15.5

Series ac Circuits
Impedance & the Phasor Diagram — Inductive Elements

From previous lesson we found that the purely inductive circuit in Fig. 15-7, voltage
leads the current by 90° and that the reactance of the coil X; is determined by wL.

Figure 15.7 Inductive ac circuit.

ET 242 Circuit Analysis 11 - Sinusoidal Alternating Waveforms Boylestad

Since v leads i by 90°, i must have an angle of — | We use the fact that 6, = 90 °in the
90° associated with it. To satisfy this condition, | fo]lowing polar format for

6, must equal + 90°. Substituting 6, = 90 we | inductive reactance to ensure the
obtain proper phase relationship between
the voltage and current of an

inductor: ZL =XL4900

lestad 3




Ex. 15-3 Using complex algebra, find the current i for the circuit in Fig. 15- 8.
Sketch the v and 7 curves.

Figure 15.8 ExaF._‘mple 15.3. Figure 15.9 Waveform for Example 15.3.
TCWT ATATySTS TT— ST ATIE WaveTors. By oot

Capacitive Resistance

Figure 15.13 Capacitive ac circuit.

We use the fact that 6. = -90°
in the following polar format
for capacitive reactance to
ensure the proper phase
relationship between the
voltage and current of a
capacitor:

|2c = x.2-90°

= AV 00— (-90%)) = L 290°
X, Z-90° X, X,

so, in the time domain,

j = \/E(XL] sin(at +90°)

Ex. 15-4 Using complex algebra, find the voltage v for the circuit in Fig. 15- 10.
Sketch the v and 7 curves.

Figure 15.10 Example 15.4.

- veforms Figure 15.11 Waveforms for Example 15.4. v

EX. 15-5 Using complex algebra, find the current i for the circuit in Fig. 15.14. Sketch
the v and i curves.

Figure 15.14 Example 15.5.

Figure 15.15 Waveforms for Example 15.5.

ET162 Circuit Analysis — Ohm’s Law Boylestad 1




EX. 15-6 Using complex algebra, find the current v for the circuit in Fig. 15.16. Sketch
the v and i curves.

Figure 15.16 Example 15.6. :
‘ . = ‘ ‘ Figure 15.17 Waveforms for Example 15.6. ‘

i = 6sin(wt — 60°) = phasor notation | =4.242 AL —60°

Il =1Z, =({4£0)(X.£-90°) =(4.242 42 - 60°)
=(0.5Q£-90°) =2.121V£-150°

and v = \/5(2.121)sin(a)t —150°) = 3.0sin( @t —150°)

ET 242 Circuit Analysis 11 — Sinusoidal Alternating Waveforms BoyTestad 2

EX. 15-8 Determine the input impedance to the series network in Fig. 15.23. Draw the
impedance diagram.

[ Figure 15.23 Example 153. |

The impedance diagram appears in Fig. 15.24.
Note that in this example, series inductive and
capacitive reactances are in direct opposition. For
the circuit in Fig. 15.23, if the inductive reactance
were equal to the capacitive reactance, the input
impedance would be purely resistive.

Figure 15.24 Impedance diagram for Example 15.8.
ET 242 Circuit Analysis — Sinusoidal Alternating Waveforms B

Series Configuration

The overall properties of series ac circuits
(Fig. 15.20) are the same as those for dc
circuits. For instance, the total impedance
of a system is the sum of the individual
impedances:

‘ Figure 15.20 Series impedance. ‘

EX. 15-7 Draw the impedance diagram for the circuit in Fig. 15.21, and find the total
impedance.

As indicated by Fig. 15.22, the input
impedance can be found graphically from

the impedance diagram by properly
scaling the real and imaginary axes and
finding the length of the resultant vector

Z. and angle 0. Or, by using vector
Figure 15.21 Example 15.7.

Figure 15.22 Impedance

diagram for Example 15.7.

For the representative series ac configuration in Fig. 15.25 having two impedances,
the currents is the same through each element (as it was for the series dc circuits)

and is determined by Ohm’s law:

The voltage across each element can be found
by another application of Ohm’s law:

‘ Figure 15.25 Series ac circuit.

Vi=12, and Vv,=12,]

KVL can then be applied in the same manner as it is employed for dc circuits.
However, keep in mind that we are now dealing with the algebraic manipulation of
quantities that have both magnitude and direction.

|FE+Vv, +V,=0 o E=V +V,
The power to the circuit can be determined by

|P = EI cos 9T|

where ﬁE is the phase angle between E and |
ET 242 Circuit Analysis 11 - Sinusoidal Alternating Waveforms Boylestad 15




Voltage Divider Rule

Ex. 15-10 Using the voltage divider rule, find the unknown voltages Vg, V. ,, V, and

V, for the circuit in Fig. 15.41. |

The basic format for the voltage divider rule in ac circuits is exactly the same as that
for dc circuits: Z.E
- 5
Zr
where V, is the voltage across one or more elements in a series that have total impedance Z,, E is the total

voltage appearing across the series circuit, and Z is the total impedance of the series circuit.

Z.E (6Q.£0°)(507.£30°)
Zo+Z,+Z, 6QL0°+9Q/90°+17Q/ —90°
_300/30°  300430°  300/30°

T 6+9-j17 6-j8 10£-53.13

V, =

Ex. 15-9 Using the voltage divider rule, find the voltage across each element of the

circuit in Fig. 15.40.

Figure 15.40 Example 15.9.

ET 242 Circuit Analysis II - Sinusoidal Alternating Waveforms Boylestad 16

=30V£83.13° -
| Figure 15.41 Example 15.10.

Z E {e} (e} o

y, = ZE (9Q2£90°)(507.£30°) _ 450120 A4SV /173130
g 10Q2£173.13° 10£-53.13
7 E _on° o — &N°

y, =2k _ (1794 —90°)(50V£30°) _ 850£-60 _85V/—687°
Z, 10Q£—-53.13° 10£-53.13

ET 242 Cireuit Analysis II - Sinusoidal Alternating Waveforms Boylestad 17

Frequency Response for Series ac Circuits

Thus far, the analysis has been for a fixed frequency, resulting in a fixed value for the
reactance of an inductor or a capacitor. We now examine how the response of a series
changes as the frequency changes. We assume ideal elements throughout the discussion
so that the response of each element will be shown in Fig. 15.46.

Figure 15.46
Reviewing the
frequency response of
the basic elements.

ET 242 Circuit Analysis 11 — Sinusoidal Alternating Waveforms Boytestad 18




Series R-C ac Circuits

Figure 15.47 Determining the frequency response of a series R-C circuit.

Now for the details. The total impedance is
determined by the following equation:

Z,=R—-jX,
and Z.=272,20;

X
=1/R2+X24—tan'ch

(15.12)

The magnitude and angle of the total impedance
can now be found at any frequency of interest

Ex. 15-12 For the series R-L circuit in Fig. 15.56:
a. Determine the frequency at which X, = R.
b. Develop a mental image of the change in total impedance with frequency
without doing any calculations.
c. Find the total impedance at /= /00 Hz and 40 kHz, and compare your answer
with the assumptions of part (b)
d. Plot the curve of V; versus frequency.
e. Find the phase angle of the total impedance at f = 40 kHz. Can the circuit be
considered inductive at this frequency? Why?

a. X, =2n,L=R and
f= R 2kQ
' 270 27(40mH)
=7957.7THz Figure 15.56 Example 15.12.

ET 242 Circuit Analysis I — Sinusoidal Alternating Waveforms oylesta

Figure 15.48 The frequency response
for the individual elements of a series of
a series R-C circuit.

T = 100 Hz f =1 kHz
1 1 1 1
X, =—=———— Xe=-—=o-—
27fC ~ 272(100 Hz)(0.01 uF) 27fC 27 (1kHz )(0.01 uF)
=159.16 kQ =15.92 kQ
nd  Z, =\[R? + X2 = [(5kQ)>(159.16kQ)* |land ~ Z, = \[R* + X% = \[(5kQ)* (15.924Q)?
=159.24 kQ =16.69 kQ
with 6,=—tan"ﬁ=—tan"& with €T=—tan"X—C
R R
159.164Q2 15.9.2kQ
=—tan —— =—tan ——
5kQ 5kQ)
= —tan "' 31.83° = —88.2° = —tan '3.18° = —72.54°
nd 2, =159 24kQ/ —88.2° and 7, =16.69kQL ~72.54°

c. Z,=R+jX,=2,20,=R? +Xf£tan'l%
At f =100 Hz :
X, =2afL = 22(100 Hz)(40mH ) = 25.13 Q
and  Z, =[R* + X} = J(2kQ)? +(25.13Q)* = 2000.16Q = R
At f =40 kHz :
X, =27fL = 27(40kHz)(40mH ) =10.25 kQ = X,

and  Z, = [R* + X} = J(2kQ)* + (10.05kQ)> =10.25kQ = X,

Both calculatio ns support the conclusion s of part (b).

d. Applying the voltage divider rule:

From part (c), we know that at 100 Hz,
Z =R so that Vp = X so that V| =20V

and V, = 0V. The result is two plot
1 i 1 Figure 15.57 Plotting V, versus for the series R-L circuit in Fig. 15.56.



gl Llask s A = 2al 2 025 HW 15-15 Calculate the voltage V, and V, for the circuits in Fig. 15.134 in Phasor
~ (0.25k0.290°)(20V£0°) form using the voltage divider rule.

and V, =
2kQ + j0.25k0
=2.48V/82.87°
At 5 kHz : X, =27 =1.26 kQ

iy, = (L26K0L90°)207£0°) . | -
2kQ + j1.26kQ Figure 15.134 Problem 15.

—10.68V257.79° N - (2kQ £0°)(120V £60°) _ 240V £60°

2kQ+ j8k0 8.25 £75.96°

_ (8k0) £90°)(120 V £60°)
8.25kQ £75.96°

=29.09 V £-15.96°

V2 =116.36 V 274.04°

X
e. 0, =—tan"' L=t

., 10.054Q2
R o 2kQ : 680+ j400+220 288+ j40

0" T o 2 T 50
— 78.75° b v, = (H0QLO0N(60V £57) 2400V 2957 _ o cov L4075

The angle 0, is closing in on the 90° of a purely inductive network. Therefore, the Vo= (22Q £0°)(60V £5%) _  1.32kV /5°
network can be considered quite inductive at a frequency of 40 kHz. 49290 ~54 257 4929 Q) ~54.25°

ET 242 Circuit Analysis II - Sinusoidal Alternating Waveforms Boylestad 24 ET 242 Cireuit Analysis II - Sinusoidal Alternating Waveforms Boylestad 25

=26.78 V £—49.25°
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Parallel ac Networks

For the representative parallel ac
network in Fig. 15.67, the total
impedance or admittance is determined
as previously described, and the source
current is determined by Ohm’s law as

follows:
=L EY,
Z

T 4‘ Figure 15.67 Parallel ac network. }—

Since the voltage is the same across
parallel elements, the current through || 7
each branch can be found through !
another application of Ohm’s law:

=EY, and 12=Z£=E'Y2

2

£
Zl

ET 242 Circuit Analysis II - Parallel ac circuits analysis Boylestad 2

KCL can then be applied in the same manner as used for dc networks with
consideration of the quantities that have both magnitude and direction.

1-1,-L,=0 or 1=1,+1,

The power to the network can be determined byP = Elcos&;
where O is the phase angle between E and [




Parallel ac Networks : R-L

Phasor Notation:
As shown in Fig. 15.69.

=Y +Y,
:GZO°+BL4—90°:;

=0.35£0°+0.452 —90° = 0.35 - /0.4
=0.55/-53.13°
1 1

Z,=—=—_———=20/53.13°
Y, 0.55£-53.13°

O 1 =l
3330 £0°+ 250 £=90 4‘ Figure 15.68 Parallel R-L network.

Admittance diagram: As shown in Fig.15.70
E
T
_EZ6
" RL0°
=(20V£53.13°)(0.35£0°) = 64.£53.13°

= (ELO)(GL0°)

I= 7 EY, =(20V.£53.13°)(0.55£—-53.13) =104£0°

Figure 15.69 Applying
phasor notation to the
network in Fig. 15.68.

EZO
I, = =(EL0)(B,£-90°
L= g = ELONB,£=90)

Figure 15.70 Admittance diagram
for the parallel R-L network in Fig. 15.68.

=(20V7£53.13°)(0.4S2—90°) =84/ —36.87°

[ B¢

KCL: Atnodea,
I-1,—-1,=0 or I=I,+I,
10420°=64,53.13°+8A4/—36.87°

=104+ jO
and 10420°=10420° (checks)

104.£0° = (3.604 + j4.84)+(6.40A— j4.804)

Phasor diagram: The
phasor diagram in Fig.

15.71 indicates that the
applied voltage E is in phase
with the current I; and leads
the current I, by 90°.

Power factor :
F, =cos8, =co0s53.13° = 0.6 lagging

The power factor of the circuit is

‘ Figure 15.71 Phasor diagram for the parallel R-L network in Fig. 15.68.

ET 242 Circuit Analysis II — Parallel ac circuits analysis
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Parallel ac Networks : R-C

Phasor Notation:
As shown in Fig. 15.73.

Y, =¥, +Y, =GZ0°+ B.290°
L gL Lgpo
1670 1250
—0.65 £0°+ 0.85 £ 90°
—0.65 + j0.8S = 1.0S /53.13°
I I

Zy=——— 9/~ 53]3°
Y, 1.0S/5313°

4‘ Figure 15.72 Parallel R-C network. L

KCL: At node a,

I-I,—1.=0 or I=1I,+I,

Power factor : The power factor of the circuit is
F, =cos 0, =co0s53.13 ° = 0.6 leading

Parallel ac Networks : R-L-C

Phasor Notation:
As shown in Fig. 15.78.

Figure 15.73  Applying phasor
notation to the network in Fig. 15.72.

Admittance diagram :
1 104 20°

E=IZ,=—=—""°""_
"y, 1S£53.13°

T
I, =(E£LO)(G£0°)

=(10V £ —53.13°)(0.65.£0°) = 6AL — 53.13°
I, =(ELO)(B.£90°)

=(10V£—53.13°)(0.85 £90°) = 84.£36.87°

=10V£—-53.13°

As shown in Fig.15.74.

Figure 15.74
Admittance diagram
for the parallel R-C
network in Fig. 15.72.

ET 242 Circuit Analysis Il — Parallel ac circuits analysis

Figure 15.77 Parallel R-L-C network.

Y, 4 Yy +Y, +Y, = GLO°+ B,/ —90°+ B,Z90°
1 1 1

Figure 15.78 Applying phasor
notation to the network in Fig. 15.77.

Boylestad 6
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= Z0°+ Z£-90°+ £90°
3.33Q 1.43Q 3.33Q

=0.3S£0°+0.782 - 90°+0.3S.£90°

=0.3S - j0.75+ j0.3S

=0.3S - j0.45 =0.55/-53.13°
1 1

TTY, 0.58/-53.13°

=20Q/53.13°




(Admittance diagram :  As shown in Fig.15.79.
Current Divider Rule

= z£ = Y, = (100V £53.13°)(0.55 £ — 53.13) = 504 £0°
I i (ELO/(GL0°) The basic format for the current divider rule in ac circuit exactly the same as
L that dc circuits; for two parallel branches with impedance in Fig. 15.82.
=(100V £53.13°)(0.3S £0°) = 304 £53.13°
I, =(ELO)(B,Z—90°)
o 130 o) . _ L _ZL
= (100V £53.13°)(0.7S £ — 90° ) = 704 £ — 36.87 ]1 ==L or 12 e
I = (ELO)(B.290°) 4 +7, 4 +7Z,

=(100V £53.13°)(0.3S £ +90° ) = 304 £143.13° R .
Figure 15.82 Applying the current divider rule. ‘

KCL: Atnodea, ?;f:’}::;;; ?el "l:di“igz‘;fe (oiiigirrinl?ig 1577 Ex. 15-16 Using the current divider rule, find the current through each parallel
-L- W . 15.77. . A
I-1,-1,-1.=0 or I=1,+1,+1_ branch in Fig. 15.83. L Z,1, _ (4Q290°)(204 20°)
TR & KT ZatZ,  30Q20°+49290°
P, = Elcos0, = (100V)(504 )cos53.13 ° = (5000W)(0. 6S) = 3000 W _ % — 164 23687 °
Power factor . The power factor of the circuit is __Zyl, _(3R2£0°)(204 £0°)
L= = o
F, =cos0, =cos53.13 ° = 0.6 lagging ZrtZ, 343313
FIGURE 15.83 = 004 207 =124/ -5313°
ET 242 Circuit Analysis IT - Parallel ac circuits analysis Boylestad 8 ET 242 Circuit Analysts IT— Parallel ac circuits analysis 5/53.13°

Ex. 15-17 Using the current divider rule, find the current through each parallel In Fig. 15.85, the frec.luet.lcy response has been inclluded fqr each element of a .
branch in Fig. 15.84. parallel R-L-C combination. At very low frequencies, the importance of the coil
will be less than that of the resistor or capacitor, resulting in an inductive network
in which the reactance of the inductor will have the most impact on the total

_ Zd, (292 -90°)(54 £30°) 104 £ —60°
R-L — = . . = .
D Ly = P 1) ) e impedance. As the frequency increases, the impedance of the inductor will increase
while the impedance of the capacitor will decrease.

e
- M0AL-60° s oo 14054

T 6.083 £80.54°
Zod,  (192+ j808Q)(£30°) 104 2 —-60°

Zo,+ 2o 6.083 £80.54 ° 1+ j6
_ (8.064 £82.87°)(34 £30°)

6.083 £80.54 ° FIGURE 15.84

_40.304 £112.87 ° _ 6.634 £32.33°
6.083 £80.54 °

/. =

Frequency Response of Parallel Elements

For parallel elements, it is important to remember that the smallest parallel
resistor or the smallest parallel reactance will have the most impact on the real

or imaginary component, respectively, of the total impedance.
4‘ FIGURE 15.85 Frequency response for parallel R-L-C elements. ’7
Boylestad 11
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Let us now note the impact of frequency
on the total impedance and inductive
current for the parallel R-L network in
Fig. 15.86 for a frequency range through
40 kHz.

A general equation for the total impedance in vector form can be developed in the
following manner:

FIGURE 15.86 Determining the frequency response of a parallel R-L network.

7, In Fig. 15.87, X, is very small at low frequencies compared to R,
establishing X as the predominant factor in this frequency range. As the frequency
increases, X, increases until it equals the impedance of resistor (220 ). The
frequency at which this situation occurs can be determined in the following manner:

X, =2af,L=R
R
and f,=——
27l
2200
27(4x107° H)
=8.75 kHz
FIGURE 15.87 The frequency response of the individual elements of a parallel R-L network. ‘ 12

7 - Ll _(RL0°)(X,290°) 7 - RX,

! Zy+Z, R+ jX, ! \R2+XL2

RX,290° e
T, . and 0, =90°—tan /
R+ X2 Ltan™ X, /R X
and 7, = &4(90%@1*’,\’/10 =tan™’ R
VR +X; X,
I, Applying the current divider rule to the network in Fig. 15.86 results in the
following:
Z 1 (R£0°)(1£0°) The magnitude of I, is determined
YU Z+Z, R+jX, ;oo RY,

SR TR
RIL0° JRP+ X

\/RZ +X? Ztan™ X, /R and the phase angle 0,

by which I, leads I is given b,
RIZ0° w L & Y
and I, =1,/0,=———/—tan"'X,/R X
R +X; 6, =—tan" LA
ET 242 Circuit Analysis IT - Parallel ac circuits analysis Boylestad 13

Equivalent Circuits

In a series circuit, the total impedance of two or more elements in series is often
equivalent to an impedance that can be achieved with fewer elements of different
values, the elements and their values being determined by frequency applied. This is
also true for parallel circuits. For the circuit in Fig. 15.94 (a),

Another interesting development appears if the impedance of a parallel circuit, such
as the one in Fig. 15.95(a), is found in rectangular form. In this case,

7.2, (5Q/-90°)(102/90°) 5020°

= = = =10Q2-90°
Zo+Z, 5QL-90°+10Q2290° 5290°

T

The total impedance at the frequency applied is equivalent to a capacitor with a
reactance of 10 Q, as shown in Fig. 15.94 (b).

FIGURE 15.94 Defining the equivalence between two networks at a specific frequency.
ET 247 Circuit Analysis IT — Parallel ac circuits analysis boylestad

7,7, _(40/90°)(3Q/0°)

1T 42, 4QL90°+3QL0°
_ 2290 _ 5 4003687
5/53.13°

=1.92Q+ jl1.44Q

There is an alternative method to find same result
by using formulas

R X’ 2
R, = 2” ”Z = (3%)(40) == 748{2 =192Q
Xp+RF 4Q)" + (3Q) 25
and
2 D FIGURE 15.95 Finding the series
= R, X, = (3Q) (4Q) = 369 _ 1.44 Q equivalent circuit for a parallel R-L
’ X,f + Ri (4Q)2 =F (3!‘2)z 25 network.
2 2 2 2 2 2
R :R:+Xx :(1.929) +(1.44Q) :5.76923.09 and X :u:w:4.09
’ R, 1.92Q 1.92 ’ X, 1.44
ET 242 Circuit Analysis I - Parallel ac circuits analysis Boylestad 15




Ex. 15-18 Determine the series equivalent circuit for the network in Fig. 15.97.

R, =8kQ
X, (resultant) = |XL = Xcl = |9kQ—4kQ| =5kQ

RX,  (8kQ)(5kQ)* 200k
and R =—3—"5= > 7=
X +R (5kQ)’+(8kQ)” 89

RX,  (BkQ)(5kQ)  320kQ

=2.25kQ

with X, = =3.6kQ (inductive)

X2+R (5kQ)* +(8kQ)’ 89

FIGURE 15.98 The equivalent series circuit

ET242 Cinl FIGURE 15.97 Example 15.18. for the parallel network in Fig. 15.97.

N

Phase Measurement

The phase angle between the applied voltage and the resulting source current is one
of the most important because (a) it is also the phase angle associated with the total
impedance; (b) it provides an instant indication of whether the network is resistive

or reactive; (c) it reveals whether a network is inductive or capacitive; and (d) it can
be used to find the power delivered to the network.

ET 242 Circuit Analysis I1 — Parallel ac circuits analysis Boylestad 17

In Fig. 15.104, a resistor has been added to the configuration between the source
and the network to permit measuring the current and finding the phase angle
between the applied voltage and the source current. In Fig. 15.104, channel 1 is
displaying the applied voltage, and channel 2 the voltage across the sensing
resistor. Sensitivities for each channel are chosen to establishes the waveforms

appearing on the screen in Fig. 15.105.

FIGURE 15.104 Using an oscilloscope to
measure Z and Or.

FIGURE 15.105 e and v for the
configuration in Fig. 15.104.

ET 242 Circuit Analysis II — Parallel ac circuits analysis

Using Ohm's law, the peak value of the current is
i = VRj(peak) =M:2mA
R, 10Q
The magnitude of the input impedance is then
V. _E 8V _
Tl

10div. 1.7div.

360° 0
and 0= (2)360" =61.2°
10
In general,

0= (div. for 6) o
(div. for T)

360°

Therefore, the total impedance is
Z, =4kQ,61.2°=1.93kQ+ j3.51kQ =R+ jX,

Boylestad 19
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HW 15-25 Find the total admittance and impedance of the circuits in Fig. 15.142.
Identify the values of conductance and susceptance, and draw the admittance diagram.

| Figure 15,142 Problem2s. | |

f Y

a  Zr=910 /0°=R 20°. Yr=10.99mS £0° =G 20°
b, Zr=200Q £90° =X; £90°, Yr=5mS £-90° = B; £—-90°

c. Zr=0.2kQ £-90° = Xz /—90°, Y7=5.00 mS £90° = B £90°

7. (10020°)(60Q £90°)
10Q+ j60Q
Yr=0108% £/-9.46°=0.15—0.02S =G —jB;

=9860 £9.46°=9.730Q+;1.62Q =R+ jX;

e 220(220=20

2 0/0° £—90° 20 2 -90°
z.- 020 }[GQ 909 12QL-90° oo g e
20-760 6320 £-7157°
=1.800—j0.6 Q=R —jX¢
Yr=053S /18.43°=0.55+0.17S = G+ B¢

1 1 1
TS 3k0Z0° 6Kk0790° 9KQ Z_90°

= 0333 %107 £0°+0.167 x 107 £=90°+0.111 x 107 £90°
=0.333 %107 S —j0.056 x 107 S = 0.34 mS £—9.55°

= G—Ji'BL

1
Zr= Y_= 2.94 kQ £9.55° =2.90 kQ +j0.49 kQ
T

Homework 15: 25, 27-32, 33, 39, 40, 47, 48
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Series & Parallel ac Networks - Introduction

In general, when working with series-parallel ac networks, consider the following

approach:

Redraw the network, using block impedances to combine obvious series and
parallel elements, which will reduce the network to one that clearly reveals
the fundamental structure of the system.

Study the problem and make a brief mental sketch of the overall approach
you plan to use. In some cases, a lengthy, drawn-out analysis may not be
necessary. A single application of a fundamental law of circuit analysis may
result in the desired solution.

After the overall approach has been determined, it is usually best to consider
each branch involved in your method independently before tying them
together in series-parallel combinations. In most cases, work back from the
obvious series and parallel combinations to the source to determine the total
impedance of the network.

When you have arrived a solution, check to see that it is reasonable by
considering the magnitudes of the energy source and the elements in the

circuit

ET 242 Circuit Analysis I1 — Series-Parallel Circuits Analysis Boylestad




a. Calculate Z.

Ex. 16-1 For the network in Fig. 16.1:
b. Determine I. c. Calculate Vi and V.. d. Find I..
e. Compute the power delivered.

f. Find F, » of the network.

The totdl impedance is defined by

7 =7 +Zz with Figure 16.2 Network in Fig. 16.1

after assigning the block impedances.

b.

_£ 12020 =19.744280.54°

I =
Y Z, 6.08Q/-80.54°

C.

Referring to Fig.16.2. we find that V,, and V. can be found

by a direct application of Ohm's law :
Ve=1.Z,=(19.744280.54° )(1Q2£0°) = 19.74V £80.54°
Ve=127Z,=(19.744280.54° )(62£L—-90°) =118.44V L —9.46°

| Figure 16.1 Example 16.1. 7 —RL0°
1

a. Assuggested in the
introduction, the network has been
redrawn with block impedances, as

Z,=2.112,

_ (XcZ-90°)(X,£90°)
= jXC + jXL

_ (204 -90°)(32290°)

shown in Fig. 16.2. Impedance Z,
is simply the resistor R of 1R, and
Z, is the parallel combination of

i1
Xcand X . J

ET 242 Circuit Analysis 11 — Series-Parallel Circuits An| and

— 20+ j3Q
_6Q40°  6Q£0°

= =6Q£-90°

1£90°

Z,=2,+7Z,=1Q - j6Q = 6.08QL —80.54°

d. Nowthat V. is known, the current I . can be also
found using Ohm's law :
1, =L JHSIVEOAGT _ 56 204150 54°
Z. 2Q/-90°
e. P,=I'R=(19.744)’(1Q1=389.67 W
f. F,= cos = cos80.54° = 0.164 leading

ET 242 Circuit Analysis II — Series-Parallel Circuits Analysis
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EX. 16-2 For the network in Fig. 16.3:

b. Repeat part (a) for L.

a. If Tis 50A L 309, calculate I, using the current divider rule.

c. Verify Kirchhoff’s current law at one node.

EX. 16-3 For the network in Fig. 16.5:
a. Calculate the voltage V. using the voltage divider rule.

b. Calculate the current 1.

a. Redrawing the circuit as in Fig. 16.4, we have
Z,=R+jX, =3Q+ j4Q =5Q,53.13°
Z,=—jX.=—j8Q=8Q,-90°

Using the current divider rule yields

_Zd (8R4 -90°)(504£30°) _ 400£L—60°
T Z,+Z,  (—j8Q8+(3Q+j4Q4  3-j4
_ 400£-60°

=804£-6.87°

_5/-53.13°

Figure 16.3 Example 16.2.

— Z,J (5925313 °)(504 £30°)
T Z,+Z, 5Q/-5313°
_ 2002813 ° _ 5o4 413626 °
5/-5313°
. I=1,+1,
504 £30° = 804 £ - 6.87 °+ 504 £136.26 °
= (79.43 - j9.57) +(-36.12 + j34.57)
= 4331 + j25.0
504 £30° = 504 £30° (checks)

H

Figure 16.4 Network in Fig. 16.3
oylestRafter assigning the block impedances. | 6

Figure 16.6
Network in
Fig. 16.5 after
assigning the
block
impedances.
Figure 16.5 Example 16.3.
a. The network is redrawn as shown
in Fig.16.6, with
Z,=5Q=5Q.0° b o1,=L o 200L0° 5540 w00
. o Z, 8Q/-5313°
T A - B 20VL20° .y 87380
Z; =+j8Q =8090° 1T Z,+2, 13Q/-67.38° '
_ Z,E  (12Q£-90°)(20V£20°) | |and
¢ Z,+7, 5Q-j12Q I,=1,+1,=2542-70°+1.544 £87.38°
-70° =(0.86 — j2.35 0.07 j1.54,
_ 240V £-70 18467/ —2.62° ( .j ) + (1 +jl.54)
13/-67.38° I.=0.93 — j0.8] =1.234 £ —41.05 °




Ex. 16-4 For Fig. 16.7:
a. Calculate the current I.
b. Find the voltage V ;.

Figure 16.7 Example 16.4.

EX. 16-6 For the network in Fig. 16.12:

a. Determine the current I.
b. Find the voltage V.

Figure 16.8 Network in Fig. 16.7 after assigning the

[ Figure 16.12 Example 16.6.

a. The equivalent current source is their sum or
difference (as phasors).

Figure 16.8

| block impedances.

la.  Redrawing the circuit as in Fig.16.8, we obta
Z, =R, +jX,=3Q+ j4Q=5Q/53.13°
Z,=R,— jX.=8Q- j6Q=102/-36.87°
_ Z,Z, _(50Q/53.13°)(10Q/-3687°)

T

CZ,+7,
_50Q/1626°  509/16.26°
T I1-j2 1118 /-10.30°
E _ 100VZ0°

land I, =—=
Z, 4.472Q226.56°

(3Q+ j4Q)+(8Q - j6Q)

b. By Ohm' s law,
o
L _100VZ0° _ 04, 53130
5Q/53.13°
o

=M=10A43ﬁ.87°
Z, 10Q£-3687°
VR‘ =I,ZR‘ =(204£—-53.13°)(3Q2£0°)=60V£L—-53.13°

Vi, = 1,2y, = (1042 +36.87°)(8QL0°) = 80V £ +36.87)

I, =—
1 ZI
Lok

=4.472Q226.56

=22.364 £ —26.56°

Redrawing the circuit
as in Fig.16.13, we obtain
Z,=2kQL0°//6.8kQ£0°

Z, = 10kQ— j20kQ

=1.545kQ20°

=22.361kQ24—63.435°

Vs + Vi, =V, =0
or V=V =V, =80V£36.87°-60V£L-53.13°
= (64 + j48) — (36 — j48) = 28 + j96 = 100V £73.74

ET 242 Circuit Analysis II — Series-Parallel Circuits Analysis
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1, =6mAZL20°—4mAL0° = 5.638mA + j2.052mA—4mA
1.638mA+ j2.052mA = 2.626mA~L51.402°

b. V=1I1Z,=(0.176mA £111.406 °)(22.36k Q£ —63.435 °)

a. Compute 1.
I=1,+L+1,.

Ex. 16-7 For the network in Fig. 16.14:
b. Find I, I,, and I
d. Find total impedance of the circuit;.

c. Verify KCL by showing that

a. Redrawing the circuit as

in Fig.16.15 reveals a strictly

parallel network where
Z,=R,=102£0°
Z,=R,+jX, =3Q+j4Q

Figure 16.14 Example 16.7.

Z, =Rs"’J'X1.2 -JXc

=8Q+ j3Q- j9O
= 80— j6Q

=3.94V £47.97 °
ET 242 Circuit Analysis II - Series-Parallel Circuits Analysis Boylestad 9
b.  Since the voltage is the same across parallel branches,||c. | = L+1L+1,
= ZE - 21?)(;;’ j(? —204.20° 60— j20=20£0°+40/—53.13°+20/+3687
! =(20+,0)+ (24— j32)+(16+ j12)
I ZE:M:4OAL—53.I3° 60— 20=60— /2 h
Tz, 50/53.13° —j20=60—- 20 (checky
° 1 1
=Ll 20020 4436870 d Zy=—=——— =3 170/1844]
Z, 10Q£-36.87° Y, 03165£-18435

The total admit tan ce is
Y, =Y, +Y,+7, L, 1.1
Zl ZZ Z3
1 1 1

Figure 16.15 Network in Fig. 16.14 following
the assignment of the subscripted impedances.

~100 T30+ 40 T30- 60

v v
50/53.13°  100/—36.87°
=0.15+0.25£53.13°+0.15£36.87°
=0.15+0.12S — j0.16S +0.085 + j0.065'

=0.15+

Ex. 16-8 For the network in Fig. 16.18:

Compute . c. Find the total power factor.
Find the average power delivered to the circuit.

a. Calculate the total impedance Z;. b.

d. Calculate I; and L,. e

Figure 16.18
Example 16.8.

=0.35—0.15 =0.3165/-18.43°

Figure 16.19 Network in
Fig. 16.14 following the
assignment of the
subscripted impedances.

11




INotice that all the desired quantities were conserved
in the redrawn network . The total impedance :
ZZZ3
Z,+Z,
(11.4Q~2-37.87°)(10Q2£36.87°)
Q- j7Q)+(8Q + j6Q)
=4Q+ D107 000 40 +6.69Q2.37°
17.03£-3.37°
=4Q+6.68Q+ j0.28Q=10.68Q + j0.28Q

7, =10.68Q2/1.5°

2, =2 +2,=2,+

=4Q+

d. current divider rule:

;o Z] _(11400£-37.87°)9.3642~1.5°)
2

T Z,+Z,  (9Q—7Q)+(8Q+ j6Q)
106.74£-3937° _106.744-39.37°
- 17— 1 T 17.03£-337°
=6.274/-36°

Applying KCL yields
I =1-1,
=(9.364£-1.5°)—(6.274£-36°)

e. P.=Elcosb,
=(100V)(9.364)cos1.5°

= (9.364— j0.25)—(5.07— j3.69.4) =(936)(0.99966)
— 4294+ j3.44=5.54/38.72° =935.68 W
ET 242 Circuit Analysis Il - Series-Parallel Circuits Analysis Boylestad 12

HW 16-13 Find the average power delivered to R, in Fig. 16.51.

Figure 16.51 Problem 13.

B3+ Ry=27k0Q+43kOQ=7kQ
R=3kQ|7kQ=21k0
Z=21kQ-j100

(40kQ £0°)(20 mA £0°)

(CDR) I'(of 10Qcap.) =

40k +21k0O- 100
=19 mA £+0.014° as expected smece R) == Z'

_ (30 £0°)(19mA £0.014°) 57 mA £0.014°

CDR
( ) L 3kO+7kO

=57mA £0.014°

10

P=FR=(57mA) 43 kO =139.71 mW

ET 242 Circuit Analysis I — Series-Parallel Circuits Analysis
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Ladder Networks

Figure 16.22
Ladder network.

Independan ce Z,, Z,, and Z, and currents
1, and I, are defined in Fig. 16.23.

Figure 16.23 Defining an approach to the
analysis of ladder networks.

Zy=Z;+27Z,
and  Z,=Z,+Z,//Z;
with Z,=2Z,+Z,//Z,
Then I1=E

7,
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Methods of Analysis and Selected Topics (AC)

For the net works with two or more sources that are not in series or parallel, the
methods described the methods previously described can not be applied. Rather,
methods such as mesh analysis or nodal analysis to ac circuits must be used.

Independent Versus Dependent (Controlled) Sources

In the previous modules, each source appearing in the analysis of dc or ac networks
was an independent source, such as E and | (or E and 1) in Fig. 17.1.

The term independent specifies that the magnitude of the source is independent of
the network to which it is applied and that the source display its terminal
characteristics even if completely isolated.

A dependent or controlled source is one whose magnitude is determined (or
controlled) by a current or voltage of the system in which it appears.

Figure 17.1 Independent sources.

Boylestad 3

Currently two symbols are used for controlled sources. One simply uses the
independent symbol with an indication of the controlling element, as shown in Fig.
17.2(a). In Fig. 17.2(a), the magnitude and phase of the voltage are controlled by a
voltage V elsewhere in the system, with the magnitude further controlled by the
constant k,. In Fig. 17.2(b), the magnitude and phase of the current source are
controlled by a current | elsewhere in the system, with the magnitude with further
controlled by k,. To distinguish between the dependent and independent sources,
the notation in Fig. 17.3 was introduced. Possible combinations for controlled
sources are indicated in Fig. 17.4. Note that the magnitude of current sources or
voltage sources can be controlled by voltage and a current.

Figure 17.2 Controlled | | Figure 17.3 Special notation for Figure 17.4 Conditions of V = 0V and
or dependent sources. controlled or dependent sources. 1 = 0A for a controlled source.
ET162 Circuit Analysis — Ohm’s Caw BuyleStau 4




Source Conversions

When applying the methods to be discussed,
it may be necessary to convert a current
source to a voltage source, or a voltage
source to a current source. This source
conversion can be accomplished in much the
same manner as for dc circuits, except
dealing with phasors and impedances instead

\ Figure 17.5 Source Conversion. \ of just real numbers and resistors.

Ex. 17-2 Convert the current source in Fig. 17.7(a) to a voltage source.

Independent Sources In general, the format for converting one type of
independent source to another is as shown in Fig. 17.5.

Ex. 17-1 Convert the voltage source in Fig.
17.6(a) to a current source.

_E__100V£0°
Z 5Q0/5313°
=204,-5313° [Fig.17.6(b)]

ET 242 Circuit Analysis Il - Parallel ac circuits analy{ Figure 17.6 Example 17.1.

— ZCZL

T Z.+7,

(X £—-90°)(X,£90°)
- ]X c + ]X L

(404 -90°)(62£90°)

T - A0+ j6Q

_ 240/0°

T 2/90°

E=1IZ
= (104.£60°)(12Q.£ —90°)

=120./-90°

Figure 17.7 Example 17.2.

=1207£-30° [Fig.17.7(b)]

Dependent Sources For the dependent sources, direct conversion in Fig.
17.5 can be applied if the controlling variable (V or I in Fig.17.4) is not determined by
a portion of the network to which the conversion is to be applied. For example, in Figs.
17.8 and 17.9, V and I, respectively, are controlled by an external portion of the
network.

ET 242 Circuit Analysis 11 — Selected Network Theorems for AC Circuits Boylestad 6

Ex. 17-3 Convert the voltage source in Fig. 17.7(a) to a current source.

Figure 17.8 Source conversion with a
voltage-controlled voltage source.

It _E_ (207)r£0°
"7 5kQ/0° Ex. 17-4 Convert the current source in
_ (4><10‘3 VYAZ0° [Fig.17.8(b)] Fig. 17.9(a) to a voltage source.

Mesh Analysis

E=1Z
= (1007) 4.£0°)(40kQ.£0°)
= (4x10°1)V£0°
[Fig.17.9(h)]

Figure 17.9 Source conversion with a current-controlled current source. ‘

ET 242 Circuit Analysis |1 - Parallel ac circuits analysis Boylestad 2

Independent VVoltage Sources  The general approach to mesh analysis for
independent sources includes the same sequence of steps appearing in previous
module. In fact, throughout this section the only change from the dc coverage is to
substitute impedance for resistance and admittance for conductance in the general
procedure.

1. Assign a distinct current in the clockwise direction to each independent closed
loop of the network.

2. Indicate the polarities within each loop for each impedance as determined by the
assumed direction of loop current for that loop.

3. Apply KVL around each closed loop in the clockwise direction. Again, the
clockwise direction was chosen to establish uniformity and to prepare us for the
formed approach to follow.

a. If an impedance has two or more assumed currents through it, the total current through
the impedance is the assumed current of the loop in which KVL law is being applied.

b. The polarity of a voltage source is unaffected by the direction of the assigned loop currents.

4_Solve the resulting simultaneous linear equations for the assumed loop currents

The technique is applied as above for all networks with independent sources or for networks with
dependent sources where the controlling variable is not a part of the petwork under investigation.




Ex. 17-5 Using the general approach to mesh analysis, find the current |, in Fig.17.10.

‘ Figure 17.10 Example 17.5.

Figure 17.11 Assigning the mesh currents and

The network is redrawn in Fig.17.11 subscripted impedances for the network in Fig.17.10.

Step 4 :

Using determinan ts, we obtain

E - -7, Substituti ng numerical values yields
L= —E, Z,+Z, = (2V —6V)(4Q) +(2V)( - j19Q)
Zi+2y =2, (4 j2Q)(AQ) +( + j2Q)( - j2Q)+(4Q)( - j29)
~Z: ZitZ _ —16-j2 —16-j2 16.124/-172.87°
E\(Z,+Z,)- E,(Z,) T j8—jP—j4  2+j4  447/6343°

= 2
(Zi+2)(2,+2:)~(2.)" | —3.614/£-236.30° or 3.614.2123.70°

— (B, —E,)Z, +E\Z,
2,2,+72,Z,+ Z,Z,

with subscripted impedances :
Z,=+jX, =+j2Q E,=2VA0°
Z,=R=4Q E,=6VZ0°
Z,==jXc=-jIQ
Steps 1 and 2 are as indicated in Fig.17.11.
Step 3 :
+E 1,7, _22(11 —Iz)=0
-Z,1,-1,)-1,Z,-E, =0

or E-17Z-172,+1,Z,=0
-1,Z2,+1,Z,-1,Z,—E, =0
sothat I1(Z,+Z,)-1,Z,=E,
—-1LZ,+1,(Z,+Z;)=-E,
which are rewritten as
11(Z1+Zz)_1222 =E
-1Z,+1,(Z,+Z,)=-E,

Dependent Voltage Sources  For dependent voltage sources, the procedure
is modified as follow:

1. Step 1 and 2 are the same as those applied for independent sources.

2. Step 3 is modifies as follows: Treat each dependent source like an independent
when KVL is applied to each independent loop. However, once the equation is
written, substitute the equation for the controlling quantity to ensure that the
unknowns are limited solely to the chosen mesh currents.

3. Steg 4 is as before.
ircuit Analysis TT - Selected Network Theorems for AC Circuits DUyIEStaU 10
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Ex. 17-6 Write the mesh currents for the network in Fig. 17.12 having a dependent
voltage source.

Steps 1and 2 are defined in Fig.17.12.
Step3: E,—LR +R,(I,-1,)=0
R,(I,—1)+uV,—I,R, =0
Then substituting V. = (I, —1,)R,
The result is two equations and two unknowns.
E—-I,R, - R,(I-1,)=0
Ry(I, = 1)+ pR, (I, = 1,) = I,R; =0

Figure 17.12 Applying mesh analysis to a network with

a voltage-controlled voltage source.

Independent Current Sources For independent current sources, the
procedure is modified as follow:

1. Step 1 and 2 are the same as those applied for independent sources.

2. Step 3 is modifies as follows: Treat each current source as an open circuit and
write the mesh equations for each remaining independent path. Then relate the
chosen mesh currents to the dependent sources to ensure that the unknowns of
the final equations are limited to the mesh currents.

3. Step 4 is as befare.

Ex. 17-7 Write the mesh currents for the network in Fig. 17.13 having an
independent current source.

Steps 1and 2 are defined in Fig.17.13.
Step3: E -1Z,+E,-1,Z,=0

with L+I=1,

The result is two equations

and two unknowns.

Figure 17.13 Applying mesh analysis to a network with an
independent current source.

Dependent Current Sources  For dependent current sources, the
procedure is modified as follow:

1. Step 1 and 2 are the same as those applied for independent sources.

2. Step 3 is modifies as follows: The procedure is essentially the same as that
applied for dependent current sources, except now the dependent sources have to
be defined in terms of the chosen mesh currents to ensure that the final equations
have only mesh currents as the unknown quantities.

3. Step 4 is as befare.




Ex. 17-8 Write the mesh currents for the network in Fig. 17.14 having an
dependent current source.

Steps 1 and 2 are defined in Fig.17.14.

Step3: E, -1Z,+1,Z,-1,Z,=0

and kK =1-1,

NowlI =1 sothatkl, =I,—1I, or I, =I,(1-k)
The result is two equations and two unknowns.

Figure 17.14 Applying mesh analysis to a network with an
current-controlled current source.

Ex. 17-12 Determine the voltage across the inductor for the network in Fig. 17.23.

FIGURE 17.23
Example 17.12.

Nodal Analysis

Steps 1 and 2 are as indicated in Fig. 17.24,

Independent Sources Before examining the application of the method to
ac networks, a review of the appropriate sections on nodal analysis of dc circuits is
suggested since the content of this section is limited to the general conclusions. The
fundamental steps are the following:

1. Determine the number of nodes within the network.

2. Pick a reference node and label each remaining node with a subscripted value
of voltage: V,, V,, and so on.

3. Applying KCL at each node except the reference.

4, _Solve the resutting eguations for the nodal voltages

Step 3: Note Fig.17.25 for
the applicatio n of KCL to node V, |
Z 11 = Z Io

0=1+1,+1,
Vaztd Vi V=l _

0
Z Z, Z,
Figure 17.24 Assigning the nodal voltages and subscripted impedances
to the network in Fig. 17.23.
ET 242 Circuit Analysis 11 — Selected Network Theorems for AC Circuits Boylestad 14

Figure 17.25 Applying KCL to the nodes V, in Fig. 17.24. ‘ Figure 17.26 Applying KCL to the nodes V, in Fig. 17.24,

Rearranging terms : Grouping equations
1 1 1 1| E
V| ==+ |-p| = |=22 1 1 1 1 5
'[21+ZZ+ZJ Z[ZJ Z K|:?+7+? Ve 1=
1 2 3 3 1
Note Fig.17.26 for the application
of KCL to the node V. V1|:i:| _V2|:i+i:| =7
0="I,+1,+1 Zy Zy Z,
V,-V, 'V,
24724 7=0 i_'_i_'_i:il 4 - +—1 =2.5mS£—-2.29°
Z, z, Z, Z, Z, 05kQ 0k 2kQ
Regarding terms : 1 1 1 1
11 1 —qpe— = =0.539mS£21.80°
V| == |-V =|=-I Z, Z, 2kQ - j5kQ
Zg Z4 Zg k Theorems for Ircuits bOyIE'StaU 15

and

V,[2.5mS £ - 2.29°]1— V,[0.5mS £0°] = 24mA £ 21.80°
7,[0.5mS £0°] - ,[0.539 mS £ 21.80°] = 4mS £ 0°

24md £0° —0.5mS £0°
ith - ‘4mA £0°  —0.539 mS.£21.80°
Y [2.5mS 2 -2.29° —0.5mS £0°
‘ 0.5mS £0° —0.539 mS £ 21.80°

(24mA £0°)(~0.539 mS £ 21.80°) + (0.5mS £0°)(4mA £0°)

" (2.5mS £ — 2.29°)(~0.539 mS £ 21.80°) + (0.5mS £0°)(0.5mS £0°)
_ —12.94x10 °¥£21.80°+2x10 °V£0°

_ —(12.01+ j4.81)x10"°V +2x10°°)

T (1.271 + j0.45)x10"° + 0.25 x10°

© —1.348 x10°° £19.51°+0.25x10° £0°

~ —10.01V - ;4.81F 11.106 V£ —154.33°

V,=9.95/./1.88°

—-1.021 - j0.45 1.116 £ -156.21°

ET 242 Circuit Analysis Il — Selected Network Theorems for AC Circuits
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Dependent Current Sources For dependent current sources, the E?<. 17-14 Write the nodal equations for the network in Fig. 17.29 having an
procedure is modified as follow: independent source between two assigned nodes.
1. Step 1 and 2 are the same as those applied for independent sources. Steps 1 and 2 are as indicated in Fig. 17.29.
2. Step 3 is modifies as follows: Treat each dependent current source like an St_eﬁ - I;eplac_;lng_the lr_lde:Jendent ISOL!rce &
independent source when KCL is applied to each defined node. IENENE LI t§ ina
uper-node that generates the following
3. Step 4 is as before. equation when KCI is anolied to node V,:
Ex. 17-13 Write the nodal equations for the network in Fig. 17.28 having a I, = ﬂ+ﬁ+[2
dependent current source. Step Land 2 are as defined in Fig .17.28 . — Z Z,
5 — igure 17.29 Applying nodal analysis to a network 9 _V =
Sep G4k ol Va Is il with an independent voltage source between defined with £ V1 B
hon-v. ,_, nodes. and we have two equations and two unknowns.
Z Z -
! 2 Dependent Voltage Sources between Defined Nodes For dependent
and Vl{i L } _ 2[ 1 } _ 7 voltage sources between defined nodes, the procedure is modified as follow:
zZ, Z Z . .
1t node V : 21 I k; 0 1. Step 1 and 2 are the same as those applied for independent voltage sources.
node 5 =
v 2_ V. ; ’ vo_v 2. Step 3 is modifies as follows: The procedure is essentially the same as that applied
21424 k[ L 2} =0 for independent voltage sources, except now the dependent sources have to be
Figure 17.28 Applying nodal analysis to a network with a %5 %y Zy defined in terms of the chosen voltages to ensure that the final equations have only
current-controlled current source. i v [1 _ k} v [17 ko1 } 0 nodal voltages as their unknown quantities.
an |~ - | =
ET 242 Circuit Analysis |1 - Selected Network Theorems for AC Cif ! Zz : z 2 Zg L] 3 Step 4 js as before

Ex. 17-15 Write the nodal equations for the network in Fig. 17.30 having an HW 17-10 An electrical system is rated 10 kVA, 200V at a leading power factor.
dependent voltage source between two defined nodes. a. Determine the impedance of the system in rectangular coordinates.
— —— b. Find the average power delivered to the system.
Steps 1 and 2 are as indicated in Fig. 17.30.

Step 3: Replacing the dependent source UV,
with a short-circuit equivalent results in the
following equation when KCL is applied to at
node V,:

I=1+1,

h, G-h) ;g

A Z,

Figure 17.30 Applying nodal analysis to a and Vz = ’UV—” = #‘Vl _Vz‘

network with a voltage-controlled voltage source. U

or V,=—"—
1+u

"

resulting in two equations and two unknown. Note that because the impedance Z, is

in parallel with a voltage source, it does not appear in the analysis. It will, however, ;
affect the current through the dependent voltage source. Homework 17:2-4, 5, 6, 14, 15
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Network Theorems (AC) - Introduction

Independent Sources

This module will deal with network theorems of ac circuit rather than dc circuits
previously discussed. Due to the need for developing confidence in the application of the
various theorems to networks with controlled (dependent) sources include independent
sources and dependent sources. Theorems to be considered in detail include the
superposition theorem, Thevinin’s theorem, maximum power transform theorem.

Ex. 18-1 Using the superposition theorem, find the current I through the 4Q
resistance (X ,) in Fig. 18.1.

Superposition Theorem

The superposition theorem eliminated the need for solving simultaneous linear
equations by considering the effects of each source independently in previous module
with dc circuits. To consider the effects of each source, we had to remove the remaining
sources . This was accomplished by setting voltage sources to zero (short-circuit
representation) and current sources to zero (open-circuit representation). The current
through, or voltage across, a portion of the network produced by each source was then
added algebraically to find the total solution for the current or voltage.

The only variation in applying this method to ac networks with independent sources is
that we are now working with impedances and phasors instead of just resistors and real
numbers

B At :
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‘ Figure 18.1 Example 18.1. ‘ ‘ Figure 18.2 Assigning the subscripted impedances to the network in Fig.18.1.
Considering the effects of the voltage
For the redrawn circuit (Fig.18.2),| [so"re¢ £ (Fig18.3). we have
. ) S 2 _ (A3
Z,=+jX, =49 W77, jAQ- 30
. . 120 5
zZ, :+JXL2 = j4Q :7:7,129:1294790
Z,=—jX.=—j3Q Lo B o
Y Zys+Zy, - j12Q+ jAQ
_ 07200 A0VL° e o0
ET 242 Circuit Analysis 11 — Network Theorems for AC Circuits ~ —j12Q+ j4Q  8Q/-90°




Z31:
and [I'=—— (current divider rule)
Z,+7,
_ (=/3Q)(j1.254) _3.754 3754/ —90°
Jj49Q- j3Q yi

Figure 18.3 Determining the effect
of the voltage source E, on the
current | of the network in Fig. 18.1.

Considering the effects of the voltage source
E, (Fig.18.4), we have
_4_JsQ_
2 = W -, =
E,  5/£0°  5p/0°
Zup+Zy  j2Q-3Q  10/-90°

720

=54,90°

The resultant current through

the 4Q reactance X, (Fig.18.5) is

I=1'-1"=3.754/-90°
=—j3.754— j2.504
=—76.254=6.2542-90°

1
and I'"= ; =254,90°

Figure 18.4 Determining the
effect of the voltage source E,
on the current | of the network
in Fig. 18.1.

ET 242 Circuit Analysis |1 — Network Theorems for AC Circuits
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Figure 18.5 Determining the resultant
current for the network in Fig. 18.1.

the 6 resistor in Fig.18.6.

Ex. 18-2 Using the superposition, find the current | through

Figure 18.6 Example 18.2.

Figure 18.7 Assigning the subscripted
impedances to the network in Fig.18.6.

ET 242 Circuit Analysis |1 — Network Theorems for AC CIFCUIts
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|For the redrawn circuit (Fig.18.7),

Z, = j6Q Z,=6Q- j8Q

IConseder the effects of the voltage source (Fig.18.8).

[ Applying the current divider rule, we have

[z 6o)24)
Z,+Z, j6Q+6Q— 8

_ 124 124/90°
T 6-,2 6.32/-18.43°
=1.94/48.43°

ET 242 Circurt Analysis IT— Parallfl ac cir

Conseder the effects of the voltage source
(Fig.18.9). Applying Ohm's law gives us
E, E, 20V.£30°

1 _ 1

Z, Z,+Z, 6320/ 1843°
=3.164248.43°

The total current through the 6Q

resistor (Fig.18.10) is

I=I'+1"
=1.94.,108.43°+3.164£48.43°
=(—0.604+ j1.804) +(2.104 + j2.364)
=1.504+ j4.164=4.424.70.2°

”

through the 6% resistor in Example 18.2.

Ex. 18-3 Using the superposition, find the voltage across the 6% resistor in
Fig.18.6. Check the results against Vg, = 1(682), where | is the current found

Figure 18.6

For the current source,

Voo = 1'(6Q)
=(1.94.£108.43°)(6Q2)
=11.4V£108.43°

For the voltage source,

Voo = 1"(6Q)

For the total voltage the 6Q) resistor (Fig.18.11) is
Voo =V'(6Q)+V"(6Q)
=11.4V/108.43°+18.96V£48.43°
=(-3.60/ + j10.82V) + (12.58V + j14.18V)
=8.98V + j25.0V = 26.5V/.£70.2°

= (3.16.4.£48.43°)(6Q2)
=18.96V/48.43°

Check the result, we have
Vso = 1(69Q) = (4.424.£70.2°)(692)
=26.5V£70.2° (checks)

Figure 18.11
Determining the resultant
voltage Vg, for the
network in Fig. 18.6.

ET 242 Circuit Analysis |1 — Network Theorems for AC Circuits
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Dependent Sources For dependent sources in which the controlling variable
is not determined by the network to which the superposition is to be applied, the
application of the theorem is basically the same as for independent sources.

Ex. 18-5 Using the superposition, determine the current I, for the network in
Fig.18.18. The quantities p and 4 are constants.

FFigure 18.20 Determining the effect of the voltage-controlled
oltage source on the current I, for the network in Fig.18.18.

Figure 18.21 Determining the effect of the current-controlled
urrent source on the current I, for the network in Fig.18.18.

_‘ Figure 18.18 Example 18.5. ’_‘ Figure 18.19 Assigning the subscripted impedances to the network in Fig.18.18.

With a portion of the system (Fig.18.19),
Z, =R, =4Q Z,=R,+ jX, =6Q+ j8Q
For the voltage source (Fig.18.20),

pe MW W AV o781 10, -38.66°
Z,+Z, 40+6Q+ 80 100+ /8Q 12.80./38.66°

ET 242 Circuit Analysis 11 — Network Theorems for AC Circuits Boylestad 9

For the current source (Fig.18.21),
o ZD) __(40)(h1)
Z,+Z, 12.8Q./38.66°

=4(0.078)hl£ —38.66° = 0.312h1£ —38.66°

For the current I, is

I,=1'+1"=0.078 uV 1 Q£ —38.66°+0.312h/~ — 38.66°

For V =10V£0°, i =20, and h =100,

1, =0.078(20)(10V£0°)/ Q£ —38.66° + 0.312(100)(20mA £0°) £ — 38.66°
=15.604 £ —38.66°+0.624/ —38.66° =16.22.4 /£ —38.66°

ET 242 Circuit Analysis 11 — Network Theorems for AC Circuits Boylestad 10

Thevenin’s Theorem

term impedance instead of resistance, that is,

any two-terminal linear ac network can be replaced with an equivalent circuit
consisting of a voltage source and an importance in series, as shown in Fig. 18.23.

Ex. 18-7 Find the Thevenin equivalent circuit for the network external to resistor
Rin Fig- 18.24. Figure 18.25 Assigning the

Thevenin’s theorem, as stated for sinusoidal ac circuits, is changed only to include the

Since the reactances of a circuit are frequency dependent, the
Thevinin circuit found for a particular network is applicable
only at one frequency. The steps required to apply this method
to dc circuits are repeated here with changes for sinusoidal ac
circuits. As before, the only change is the replacement of the
term resistance with impedance. Again, dependent and
indenendent sources are treated separately.

subscripted impedances to the
network in Fig.18.24.

FFigure 18.23 Thevenin equivalent circuit for ac networks. ‘ |ndependent Sources

P. Mark (o, +, and so on) the terminal of the remaining two-terminal network.

B. Calculate Z-, by first setting all voltage and current sources to zero (short circuit and open
circuit, respectively) and then finding the resulting impedance between the marked terminals.

voltage between the marked terminals.

between the terminals.of the Thevinin equivalent circuit.

[L. Remove that portion of the network across which the Thevenin equivalent circuit is to be found.

. Calculate E,, by first replacing the voltage and current sources and then finding the open-circu

b. Draw the Thevenin equivalent circuit with the portion of the circuit previously removed replaced

Figure 18.24
Example 18.7.
|Steps 1 and 2 (Fig.18.25):
Z,=jX, =j8Q  Z,=-jX, =-j2Q
IStep 3 (Fig.18.26): Figure 18.26 Determine|
" . the Thevenin impedance
7, = 2z, _ (j8Q)(-j2Q) for the network in
Z,+7Z, j8Q-j2Q Fig.18.24.
— 2
-TJ16Q_ 180, 60,900
Jj6Q 6.£90°
IStep 4 (Fig.18.27): Figure 18.27 Determine
7.E the open-circuit Thevenin
= 2 (voltage divider rule) voltage for the network in
Z,+Z, Fig.18.24.
_jee)aor) - j20v 3.337/ —180°
j8Q — j2Q) Jj6 ms Boylestaq




Step 5: The Thevenin equivalent circuit is shown in Fig. 18.28.

Figure 18.28 The Thevenin
equivalent circuit for the
network in Fig.18.24.

Ex. 18-8 Find the Thevenin equivalent circuit for the network external to resistor

to branch a-a” in Fig. 18.24.
Figure 18.29
Example 18.8.

Step 3 (Fig.18.31): | Figure 18.26 Determine the Thevenin

7.7 impedance for the network in Fig.18.29.
Zy =23+ =
Z+Z,
_ (100.53.13°)(5Q/ —53.13°) :
215 ar ” N Figure 18.27 Determine the open-
(6Q + JBQ) + (3Q - J4Q) circuit Thevenin voltage for the
50.,0° 50.,0° network in Fig.18.24.
= j5+ =7
9+ j4 9.85.£23.96°
= j5+5.08£—23.96° = j5+4.64— j2.06
=4.64Q + j2.94Q =5.490/32.36°

Steps 1and 2 (Fig.18.30) : Note the reduced
complexity with subscripted impedances
Z, =R+ jX, =6Q+j8Q
Z, =R, - jX.=3Q- j4Q
Zy=+jX,, = j5Q

Figure 18.30 Assigning the
subscripted impedances for

Step 4 (Fig.18.32): Since a—a' is an open circuit,

I, = 0.Then E,, is the voltage drop across Z, :

the network in Fig.18.29. 13

E, = ZE (voltage divider rule) = (=i 7)) _50r£-53.137 5.08V £ —77.09°
Z,+27, 9.8500./23.96° 9.85223.96°
Step 5: The Thevenin equivalent circuit is shown in Fig. 18.33.
ET 242 Circuit Anatysis Il-‘t Fioure 18.33_The Thevenin equivalent CITCUIt Tor the Network mn Fig.18.29. i 17

Dependent Sources For dependent sources with a controlling variable not in
the network under investigation, the procedure indicated above can be applied. However,
for dependent sources of the other type, where the controlling variable is part of the
network to which the theorem is to be applied, another approach must be used.

Ex. 18-11 Determine the Thevenin equivalent circuit for the network in Fig. 18.24J

The new approach to Thevenin’s theorem can best be
introduced at this stage in the development by considering the
Thevenin equivalent circuit in Fig. 18.39(a). As indicated in fig.
18.39(b), the open-circuit terminal voltage (E,.) of the Thevenin
equivalent circuit is the Thevenin equivalent voltage; that is

ETh

If the external terminals are short circuited as in Fig. 18.39(c),

oc

the resulting short-cirpuit current is determined by
ETh
—
ZTh
or, rearranged, 7 _En
Th — I
E
and Ly =—*
ISL‘

From Fig .18 .47, E,, is

Ep =E, =-hI(R/IR;)) =~ IR\ Ry1
R, +R,
Method 1: See Fig.18.48. Zy =R IR, - jX

Method 2: See Fig.18.49. I, =M
(Ry I Ry) = jX ¢

| [Figure 1847 Example18.11. | »
and 2, =Bo o TMRIR) _poyp iy
1 (R, 1 R

se

(R1 ”Rz)_jXC
E

Method 3: See Fig.18.50. [, =— % ——
S (R R,) - X ¢
Figure 18.48 Determine the Thevenin and  Z, =—*=R I R, = jX
impedance for the network in Fig.18.47. Ig

T
Figure 18.49 Determine the short-
circuit current for the network in
Fig.18.47.

Figure 18.50 Determining the
Thevenin impedance using the

- Figure 18.39 Defining an alternative approach for determining the Thevenin impedance.

= rk Theq approach Zq, = E/l,.




Maximum Power Transfer Theorem

When applied to ac circuits, the maximum power transfer theorem states that

maximum power will be delivered to a load when the load impedance is the
conjugate of the Thevenin impedance across its terminals.

That is, for Fig. 18.81, for maximum power transfer to the load,

Figure 18.81 Defining the
conditions for maximum power
transfer to a load.

Z,=Zp and 6,=-6
or, in rectangular form,

R, =R, and = jX,

oad

= inTh

ET 242 Circuit Analysis |1 — Network Theorems for AC Circuits
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and find the maximum power.

Ex. 18-19 Find the load impedance in Fig. 18.83 for maximum power to the load,

and

The conditions just mentioned

will make the total impedance

of the circuit appear purely

resistive, as indicated in Fig.18.82:
Zr

=(R* jX)+(R¥ jX)

Z,=2R

‘ Figure 18.82 Conditions for maximum power transfer to Z, .

ET 242 CilouitATatysisH=Tetwork THeoTems-for AC-eieaits

Since the circuit is purely resistive, the power factor of the
circuit under maximum power conditions is I : that is,
F,=1 (maximum power transfer)
The magnitude of the current I in Fig.18.82 is
= ETh = ETh
Z, 2R
The maximum power to the load is

2
P, =r'rR=[En| g
2R

2
and P, = Ep,
4R

max

1

Revlectad
Doyrestacr
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[ Figure 18.83 Example 18.19.

Determine Z,, [Fig.18.84(a)] :

Z,=R—- jX.=6Q- j8Q=100,-53.13°
Z,=+jX, = j8Q

Z,Z, _(10Q£-53.13°)(8Q2£90°)

7. =
" Z+7, 6Q— j8Q+ j8Q
= 30%23(237 =13.3300/36.87° =10.66Q+ j8Q

HW 18-6 Using superposition, determine the current I, (A = 100) for the network in
Fig. 18.112.

and 7, =13.33Q0./ —36.87° =10.66Q2 — j8Q
To find the max imum power, we must find

E,, = 2] (voltage divider rule)
Z,+Z,

_ (8Q£90°)(9¥£0°) _ 72V£90°

=12V/90°

Figure 18.84 Determining (a) Z;, and (b) Ey;, for the
network external to the load in Fig. 18.83.

j8BO+6Q - j8Q  6£0°
_En @y

Then P, —Lm_ _W2V)

e =R T 4(10.660)
:£:338W
42,64

T 242 CITCOTT ATTatySIS 11— SETECtet NEWOrK TTEOoTEmS To1 AC

g¢

r=

Z,=20Kk0 £0°

Z, Z Z,=10kQ £90°
I=2mA £0°
n _TIJ E=10V £0°
Figure 18.112 Problems 6 and 20.
h (20kQ £0°)(100)(2 mA £0°)
Z,(hI) _C 0kO L0 )\\10[?)( mA £0%) 0179 A /—26.57°
Z,+Z, 20kQ + j10kQ

__E___ 1ovZ£ee

S Z,+Z, 2236k0/2657°

=0.447 mA £-26.57°

1" (direction of T')

mA £-26.57° - 0447 mA £-26.57°
178.55 mA £-26.57°

Homework 18:1, 2, 6, 12, 13, 19, 39

ET 242 Circuit Analysis |1 — Network Theorems for AC Circuits
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Power (AC) - Introduction

The discussion of power in earlier module of response of basic elements included
only the average or real power delivered to an ac network. We now examine the
total power equation in a slightly different form and introduce two additional types
of power: apparent and reactive.

General Equation

Key Words: Power, Apparent Power, Power Factor, Power Meter, Effective Resistance

ET 242 Circuit Analysis 11 — Power for AC Circuits Boylestad 2

For any system as in Fig. 19.1, the power
delivered to a load at any instant is
defined by the product of the applied
voltage and the resulting current; that is,

p=Vi

In this case, since v and i are sinusoidal
quantities, let us establish a general case

where v="V,sin(wt+ 6)
‘ Figure 19.1 Defining the power delivered to a load.
andl:l 7 Circutt nmysmnl—;wléFﬁwlr’%g{t,xrcuus Boylestad 3




The chosen v and i include all possibilities because, if the load is purely resistive, 6

= 0°. If the load is purely inductive or capacitive, 6 = 90° or 6 = — 90°, respectively.

Substituting the above equations for v and I into the power equation results in

p =Vl sinwt sin(wt + 6)

If we now apply a number of trigonometric identities, the following form for the
power equation results in:

p = VIcosO(l — cos2wt) + VI sinb(sin2wt)

where V and 7 are rms values.

Resistive Circuit

For a purely resistive circuit (such as that
in Fig. 19.2), v and i are in phase, and 6 =
0°, as appearing in Fig. 19.3. Substituting
0 =0° into the above equation.

Figure 19.2 Determining the power delivered to a purely resistive load

Pr =VIcos(0°)(1-cos2wt)+VIsin(0°)sin 2a¢
=VI(1-cos2wt)+0
or pp=VI-VIcos2wt

where V1 is the average or dc term and —V/cos2 wt is a negative cosine wave with
twice the frequency of either input quantity and a peak value of V1.
Note that T, = period of input quantities
T, = period of power curve py

Consider also that since the peak and average values of the power curve are the
same, the curve is always above the horizontal axis. This indicates that

the total power delivered to a resistor will be dissipated in the form of heat.

The average (real) power is VI; or, as a summary,

VI y?
=Vl =—tm—[’R="—  (watts, W
D 5 = ( )

The energy dissipated by the resistor (WR) over one full cycle of the applied
voltage is the area under the power curve in Fig. 19.3. It can be found using the

following equation: W = pt
where p is the average value and t is the period of the applied voltage, that is
W, =VIT, or W,=VI/f, (joules, J)

EX. 19-1 For the resistive circuit in Fig. 19.4,
a. Find the instantaneous power delivered to the resistor at times t, through t,.
b. Plot the results of part (a) for one full period of the applied voltage.
c. Find the average value of the curve of part (b) and compare the level to that
determined by Eq. (19.3).

d. Find the energy dissipated by the resistor over one full period of the applied voltage.

Figure 19.4 Example 19.1.

a. t:vy=0V and p,=vii,=0W

b. The resulting plot of vy, i,,and p, appears in Fig. 19.5.
c. The average values of the curve in Fig. 19.5 is 18 W, which is
an exact match with that obtained using Eq.(19.3). that is,
V.1, (2V)(34)
L B
d. The area under the curve is determined by Eq.(19.5) :
v, _(121)(34) _18

18w

mJ

R

S 2(1kHz) ! Figure 19.5 Power curve for Example 19.1.

Apparent Power

v =12V and i, =12V/3Q=34
Pr = Vaig = (12V)(3A) =36 W

Figure 19.5 Assigning the subscripted
impedances to the network in Fig.18.6.

tyivp =6V and i,=6V/4Q=154 tyiv, =—12V and i, =-12V/4Q=-34
Pa = Vaiy = (VY154 =9 W P = vl = (C12V)(34) =36 W

t,:ve =0V and pp=vii,=0W v =0V and pp=veiy =0W

ET 242 Circuit Analysis 11 — Power for AC Circuits Boylestad

From our analysis of dc networks (and resistive elements earlier), it
would seen apparent that the power delivered to the load in Fig.
19.6 is determined by the product of the applied voltage and current,
with no concern for the components of the load; that is, P = VL.
However, the power dissipated, less pronounced for more reactive
loads. Although the product of the voltage and current is not always
the power delivered, it is a power rating of significant usefulness in
the description and analysis of sinusoidal ac networks and in the
maximum rating of a number of electrical components and systems.
It is called the apparent power and is represented symbolically by

S*. Since it is simply the product of voltage and current, its units are | Figure 19.6 Defining the
volt-amperes (VA). _ apparent power to a load.




Its magnitude is determined by
S=VI (volt-amperes,VA)

v However, S=vi
i =17 I=—
Updiices 4 gad VA Therefore, P=Scos@ (W)
then S=1°Z (V4) and the power factor of a system F, is
v’ P
and $= 7 v4) F,=cosf = 5 (unitless)

The average power to the load in Fig.19.4 is
P =VIcosd

Inductive Circuit and Reactive Power

The reason for rating some electrical
equipment in kilovolt-amperes rather
than in kilowatts can be described using
the configuration in Fig. 19.7. The load
has an apparent power rating of 10 kVA
and a current demand of 70 A is above
the rated value and could damage the
load element, yet the reading on the
wattmeter is relatively low since the load

For a purely inductive circuit (such as that

in Fig. 19.8), v leads i by 90°, as shown in

Fig. 19.9. Therefore, in Eq. (19.1), © =—

90°. Substituting © =—90°, into Eq. (19.1),

yields Figure 19.6 Defining the power level for a
P, = VI cos(90°)(1 - cos 2wt) + VI sin(90°)(sin 2wt) || purely inductive load.

=0+VIsin2wt
or P, =VIsin2wt 19.11)

is highly reactive.

Figure 19.7 Demonstrating the reason for rating a
load in kVA rather than kW.

ET 242 Circuit Analysis I1 — Power for AC Circuits

Figure 19.9 The power curve for a purely
inductive load.

where VI sin2 wt is a sine wave with twice the frequency of either input quantity
and a peak value of V/. Note that the absence of an average or constant term in the
equation.
Plotting the waveform for p, (Fig. 19.9), we obtain
T, = period of either input quantity

T, = period of p, curve

\

Note that over one full cycle of p; (T,), the area above the horizontal axis in Fig.
19.9 is exactly equal to that below the axis. This indicates that over a full cycle of
py» the power delivered by the sources to the inductor is exactly equal to that
returned to the source by the inductor.

The net flow of power to the pure (ideal) inductor is zero over a full cycle, and no
energy is lost in the transaction.

The power absorbed or returned by the inductor at any instant of time t, can be
found simply by substituting t, into Eq. (19.11). The peak value of the curve VI is
defined as the reactive power associated with a pure inductor. The symbol for
reactive power is Q. and its unit of measure is the volt-ampere reactive (VAR).
Q, =VIsin@ (volt — ampere reactive , VAR )

where 0 is the phase angle between V and I.

For the inductor ,
0, =VI (VAR) (19.13)
or,since V=IX,orI=V/X,
2
0, =I*X, (AR) or 0, ="— (ViR)

L

ET 242 Circuit Analysis 11 — Power for AC Circuits Boylestad 10

The energy stored by the inductor during the positive portion of the cycle (Fig.19.9) is
equal to that returned during the negative portion and can be determined using the
following equation: W = Pt

Where P is the average value for the interval and t is the associated interval of time.
The average value of the positive portion of a sinusoid equals 2(peak value/Tt) and t =
T,/2.

L

(21 T, g VIT, 7 Since the frequency f, of power curve is twice that
== 5 @ L= ) of the input quantity, if we substitute the frequency

or,sinceT, =1/ f,, where f, is the frequency [ of the input voltage or current, Eq.(19.17) becomes

Vi Vi
of the p, curve, we have W, = =) = whereV =I1X, = IloL
1 1
Vi
W, = )  (19.17) sothar w,=U@DL i w — 12 )
zf @

[Ex. 19-2 For the inductive circuit in Fig. 19.10,

a. Find the instantaneous power level for the inductor at times t, through t;.

b. Plot the results of part (a) for one full period of the applied voltage.

c. Find the average value of the curve of part (b) over one full cycle of the applied voltag
and compare the peak value of each pulse with the value determined by Eq. (19.13).

d. Find the energy stored or released for any one pulse of the power curve.

ET 247 Circuit Analysis 11— Power for AC Circuits Duyieuuu' TT




[ Figure 1910 Example 19.2. |

b. The resulting plot of v,, i,, and
p, appears in Fig. 19.11.

‘ Figure 19.11 Power curve for Example 19..

2.

a. t:v, =0V and p, =vi =0W

14
t,:v, =7.071V and i, =X—"’sin(a—90°)
L

100 . o . o
= 5sln(az —90°) = 2sin(a —90°)
at o =45°,i; = 2sin(45°—-90°) = 2sin(—45°) = -1.4144
p,=v,i, =(7.071V)(-1.4144) =-10 W
tyii, =04, p,=v,i, =0W

ty:v, =7.071V, i, =2sin(a —90°) = 2sin(135° - 90°) 2 2

=2sin45°=1.4144
P, =v,i, =(1.071V)(1.4144) = +10 W
ts:v, =0V, p,=vi, =0W

c. The average value for the curve in
Fig. 19.11 is OW over one full cycle
of the applied voltage. The peak value
of the curve is 10W which compares
directly with that obtained from the
product

_Vul, _(100)24) _

Vi 10w

d. The average stored or released
during each pulse of the power curve

18
vi V1 V)24
w, :—1 === =@ =50mJ]

Power-Factor Correction

The design of any power transmission system is very sensitive to the magnitude of the
current in the lines as determined by the applied loads. Increased currents result in
increased power losses (by squared factor since P = I’R) in the transmission lines due
to the resistance of the lines. Heavier currents also require larger conductors,
increasing the amount of copper needed for the system.

Every effort must therefore be made to keep current levels at a minimum. Since the
line voltage of a transmission system is fixed, the apparent power is directly related to
the current level. In turn, the smaller the net apparent power, the smaller the current
drawn from the supply. Minimum current is therefore drawn from a supply when S =
P and QT = 0. Note the effect of decreasing levels of QT on the length (and
magnitude) of S in Fig. 19.28 for the same real power.

The process of introducing reactive elements to
bring the power-factor closer to unity is called is
called power-factor correction. Since most loads
are inductive, the process normally involves
introducing elements with capacitive terminal
characteristics having the sole purpose of
improving the power factor.

ET 242 Circuit Analysis 11 — Power for AC Circuits Boylestd o 2w, 2200rad/s)

ET 242 Circuit AnFigure-19.28 Demonstrating the impact of power-factor correction on the power triangle of a network.

In Fig. 19.29(a), for instance, an inductive load is drawing a current IL that has a real
and an imaginary component. In Fig. 19.29(b), a capacitive load was added in parallel

Power Meter

The power meter in Fig. 19.34 uses a sophisticated

with original load to raise the power factor of the total system to the unity power-
factor level. Note that by placing all the elements in parallel, the load still receives the
same terminal voltage and draws same current I; . In other words, the load is unaware
of and unconcerned about whether it is hooked up as shown in Fig. 19.29(a) or (b).

Figure 19.29 Demonstrating the impact of a capacitive element on
the power factor of a network.

Solving for the source current in Fig.19.29(b) :
I, =1.+1,
=) 1 (R + I () = jlc + jI, = JI,
=L R+ JU L Ue) + e )] =1, + e +1, ]
If X is chosen such that I . =1, then

The result is a source current whose
magnitude is simply equal to the real
part of the inductive load current,
which can be considerably less than
the magnitude of the load current in
Fig. 19.29(a). In addition, since the
phase angle associated with both the
applied voltage and the source
current is same, the system appears
“resistive” at the input terminals, and
all of power supplied is absorbed,
creating maximum efficiency for a
generating ufility

electronic package to sense the voltage and current
levels and has an analog-to-digital conversion unit that
display the levels in digital form. It is capable of
providing a digital readout for distorted nonsinusoidal
waveforms, and it can provide the phase power, total
power, apparent power, reactive power, and power
factor. The power quality analyzer in Fig. 19.35 can
also display the real, reactive, and apparent power

levels along with the power factor. However, it hasa  Figure 19.34 Digital single-phase and three-phase

board range of other options, including providing the ~Power meter.
harmonic content of up to 51 terms for the voltage,
current, and power.

Figure 19.35 Power quality analyzer capable of
displaying the power in watts, the current in amperes,
and the voltage in volts.

Effective Resistance

I, =1, +j(0)=1,£0°

Boylestad 14

The resistance of a conductor as determined by the equation R = p(I/A) is often called the dc, ohmid]
or geometric resistance. It is a constant quantity determined only by the material used and its
physical dimensions. In ac circuits, the actual resistance of a conductor (called effective resistance)
differs from the dc resistance because of the varying currents and voltages that introduce effects not
present in dc circuits. These effects include radiation losses, skin effect, eddy currents, and
hysteresis losses.




Effective Resistance — Experimental Procedure

The effective resistance of an ac circuit cannot be measured by the ratio V/I since this
ratio is now the impedance of a circuit that may have both resistance and reactance.

The effective resistance can be found, however, by using the power equation P = I°R,
where P

eff=1_z

A wattmeter and ammeter are therefore necessary for measuring the effective
resistance of an ac circuit.

Effective Resistance — Radiation Losses

Effective Resistance — Skin Effect

Figure 19.36 Demonstrating the skin effect on the effective
resistance of a conductor.

The radiation loss is the loss of energy in the form of electromagnetic waves during
the transfer of energy in the from one element to another. This loss in energy requires
that the input power be larger to establish the same current I, causing R to increases as
determined by Eq. (19.31). At a frequency of 60Hz, the effects of radiation losses can
be completely ignored. However, at radio frequencies, this is important effect and
may in fact become the main effect in an electromagnetic device such as an antenna.

Effective Resistance — Hysteresis and Eddy
current losses

ET 242 Circuit Analysis Il - Power for AC Circuits Boylestad 16

As mentioned earlier, hysteresis and eddy current losses appear when a ferromagnetic material is
placed in the region of a changing magnetic field. To describe eddy current losses in greater detail,
we consider the effects of an alternating current passing through coil wrapped around a
ferromagnetic core. As the alternating current passes through the coil, it develops a changing
magnetic flux @ linking both coil and the core that develops an induced voltage and geometric
resistance of the core R = p(I/A) cause currents to be developed within the core, i,,,, = (€,,/Rc),
called eddy currents.

Deavdectad
T 242 CIremiT ATatysts 1= Power for AC cirenn Doytestat T

_ 2
p eddy — l eddy Rcore

The eddy current loss is proportional to the square of
the frequency times the square of magnetic field
strength:

Peiay ® /7B’
Eddy current losses can be reduced if the core is
constructed of thin, laminated sheets of ferromagnetic

HW 19-10 An electrical system is rated 10 kVA, 200V at a leading power factor.
a. Determine the impedance of the system in rectangular coordinates.
b. Find the average power delivered to the system.

material insulated from one another and aligned
| parallel to the magnetic flux.

Figure 19.37 Defining the eddy current
losses of a ferromagnetic core.

Boylestad 18
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a = Sr_10000VA .,
E 200V

0.5 = 607 leading
- I, leads E by 60°
E 200 V £0°
Ir=—=""""_=4Q/-60°=2Q-j3464Q =R —jXc
I, 50 A £60°

b, Fy=2T = pr=F,5r=(0.5)(10,000 VA) = 5000 W

St
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Resonance - Introduction

The resonance circuit is a combination of R, L, and C
elements having a frequency response characteristic
similar to the one appearing in Fig. 20.1. Note in the
figure that the response is a maximum for the frequency
Fr, decreasing to the right and left of the frequency. In
other words, for a particular range of frequencies, the
response will be near or equal to the maximum. When
the response is at or near the maximum, the circuit is
said to be in a state of resonance.

‘ Figure 20.1 Resonance curve.

Key Words: Series Resonance, Total Impedance, Quality Factor, Selectivity
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Series Resonance — Series Resonance Circuit
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The total impedance of this network at any
frequency is determined by

Zr =R+ jX, —jXc = R +j(X, = X)
The resonant conditions described in the
introduction occurs when
X, = X, (20.2)
removing the reactive component from the

total impedance equation. The total
impedance at resonance is then

Z, =R

representing the minimum value of Z at any
frequency. The subscript s is employed to
indjcate series resonant conditions

The resonant frequency can be
determined in terms of the inductance
and capacitance by examining the
defining equation for resonance [Eq.
(20.2)]: X =X

Substituti ng yields

oL = L and o’ = L
wC LC
1
and 0 =—
WJLC
1
or ————
5 27-JLC

f = hertz (Hz), L = henries (H),
C = farads (F)

- Figure 20.2 Series resonant circuit. 4

is

The current through the circuit at resonance
_ EZ0° _E
RZ0° R

Z£0°

since Z is a minimum value. Consider also
in phase at resonance.

which is the maximum current for the circuit in Fig. 20.2 for an applied voltage E

that the input voltage and current are

Since the current is the same through the capacitor and inductor, the voltage across
each is equal in magnitude but 180° out of phase at resonance:

V, = (I£0°)(X, Z90°) =
V, = (I£0°)(X £ —90°) = IX £ —90°

1X, 290° 180° out

of phase

And, since X = X, the magnitude of V| equals V_. at resonance; that is,

V. =V,

and E, I, and VR are in phase at resonance.

Fig. 20.3, a phasor diagram of the voltage and
current, clearly indicates that the voltage across
the resistor at resonance is the input voltage,

Figure 20.2
Phasor diagram
for the series
resonant circuit
at resonance.

ET 242 Circuit Analysis II — Series Resonance
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factor of the circuit at resonance is

Fp:cos9:P/S and FPS:I

The average power to the resistor at resonance is
equal to /°R, and the reactive power to the capacitor
and inductor are /°X and I°X_, respectively. The
power triangle at resonance (Fig. 20.4) shows that the
total apparent power is equal to the average power
dissipated by the resistor since Q; = Q.. The power

Figure 20.4 Power triangle for the
series resonant circuit at resonance.

Substituting for an inductive reactance in Eq.(20.8)
at resonance gives us
I'x, X, ol
= and =—L=—""209
9o, R o, R r (20.9)
If the resistor R is just the resis tan ce of the coil(R,)|

we can speak of the Q of the coil, where

X
O =0, = RfL

1

Note in Fig.20.6 that for coils of the same type, Q,
drops off more quickly for higher levels of inductance
If we substitute
1
o, =2xf, and then f, =72”\/E
into Eq.(20.9), we have
_ol _24L _2z( 1
0 = TR (z;r\/ﬁ J

~(sie - =l

providing Q. in terms of the circuit parameters .

Series Resonance — Quality Factor (Q)

The quality factor Q of a series resonant circuit is defined as the ratio of the reactive
power of either the inductor or the capacitor to the average power of the resistor at

resonance; that is,

Q, = reactive power / average power

The quality factor is also an indication of how much energy is placed in storage

compared to that dissipated. The lower the level of dissipation for the same reactive pow:
the larger the Q. factor and the more concentrated and intense the region of resonance

For series resonant circuits used in communication systems,

is usually greater than 1. By applying the voltage divider

Irule to the circuit in Fig.20.2, we obtain

v, = X,E_XE (at resonance)
ZT
and V, =QE or V.= Xe E XcE
Z R

T

and Ve, =0,E

ET 242 Circuit Analysis IT — Series Resonance
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Figure 20.6 Q, versus frequency for a series of
inductor of similar construction.
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Series Resonance — Z; Versus Frequency

The total impedance of the series R—L—C ¢
frequency is determined by

Zr =VR2+()(L _Xc)z

Z, =R+ jX,-jX. or Z,=R+jX,—X.)

The magnitude of the impedance Z, versus frequency is determined by

ircuit in Fig.20.2 at any

The total-impedance-versus-frequency curve for the
series resonant circuit in Fig. 20.2 can be found by
applying the impedance-versus-frequency curve for
each element of the equation just derived, written in
the following form:

2.0 = IROF +1x, (=X /)P

Where Z,(f) “means” the total impedance as a function

of frequency. For the frequency range of interest, we ‘ Figure 20.8 Resistance versus frequency.

assume that the resistance R does not change with

frequency. resulting in the plot in Fig.20.8.
ET 242 Circuit Analysis II — Series Resonance
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The curve for the inductance, as determined by the

reactance equation, is a straight line intersecting the origin

with a slope equal to the inductance of the coil. The
mathematical expression for any straight line in a two-
dimensional plane is given by

y=mx+b
Thus, for the coil,
X, =2xfL+0=2aL)f) + 0

y= m-x+b
(where 277fL is the slope), producing the results shown in
Fig. 20.9. : n
For the capacitor, | ¢ e 7 Xof =0

which becomes yx = £, the equation for a hyperbola, where

y(variable ) = X .
x(variable ) = f

k(variable ) = ﬁ
T

The hyperbolic curve for X(f) is plotted in Fig.20.10. In

particular, note its very large magnitude at low frequencies

If we place Figs.20.9 and 20.10 on the same set of axes, we
obtain the curves in Fig.20.11. The condition of resonance
is now clearly defined by the point of intersection, where X,
= X, For frequency less than Fs, it is also quite clear that
the network is primarily capacitive (X > X,). For
frequencies above the resonant condition, X; > X, and
network is inductive.

| and its ranid dron-off a5 the frequency increases

‘ Figure 20.9 Inductive reactance versus frequency.

Figure 20.10 Capacitive reactance versus
frequency.

tad 9

Applying |20 =R +1X, () =X (NP

=VIROOP + X (NP

Figure 20.11 Placing the frequency response of
the inductive and capacitive reactance of a series
R-L-C circuit on the same set of axes.

Series Resonance — Selectivity

rose to its peak value.

If we now plot the magnitude of the current / = E/Z; versus frequency for a fixed
applied voltage E, we obtain the curve shown in Fig. 20.14, which rises from zero
to a maximum value of £/R and then drops toward to zero at a slower rate than it

to the curves in Fig.20.11, where X(f) = X, (f) — X (), we
obtain the curve for Z(f) as shown in Fig.20.12.The
minimum impedance occurs at the resonant frequency and
is equal to the resistance R.

The phase angle associated with the total impedance is

(capacitive), as shown in Fig.20.13, whereas at high
frequencies, X; > X, and © approaches 90°. In general,
therefore, for a series resonant circuit:

f<[f,: network capacitive; I leads E
f > f,: network capacitive; E leads I

ind © approaches —90° [
T

igure 20.12  Z versus frequency for the series
sonant circuit.

f = f.: network eapacitive; E and I are in phase| [ Figure

13 Phase plot for the series resonant circuit.

There is a definite range of frequencies at which
the current is near its maximum value and the
impedance is at a minimum. Those frequencies
corresponding to 0.707 of maximum current are
called the band frequencies, cutoff frequencies,
half-power frequencies, or corner frequencies.

They are indicated by f, and f, in Fig.20.14. The
range of frequencies between the two is referred
to as bandwidth (BW) of the resonant circuit.

Figure 20.14 T versus frequency for the series
resonant circuit.

Half-power frequencies are those frequencies at which the power delivered is one-
half that delivered at the resonant frequency; that is

P

HPF =E max

L o P, =1R

ET-242 Cirouit-AnalvsisH—P forACCh

Rnylncfnd 1




Since the resonant circuit is adjusted to select a band of
frequencies, the curve in Fig.20.14 is called the selective
curve. The term is derived from the fact that on must be
selective in choosing the frequency to ensure that is in the
bandwidth. The smaller bandwidth, the higher the
selectivity. The shape of the curve, as shown in Fig.
20.15, depends on each element of the series R-L-C
circuit. If resistance is made smaller with a fixed
inductance and capacitance, the bandwidth decreases and
the selectivity increases.

The bandwidth (BW) is

Bw =1
9

It can be shown through mathematical manipulations of
the pertinent equations that the resonant frequency is
related to the geometyi nd frequencies;

Series Resonance — Vg, V, and V.

Plotting the magnitude (effective value) of the voltage Vi, V|, and V. and the current | versus
frequency for the series resonant circuit on the same set of axes, we obtain the curves shown in
Fig.20.17. Note that the V, curve has the same shape as the I curve and a peak value equal to the
magnitude of the input voltage E. The V. curve build up slowly at first from a value equal to the
input voltage since the reactance of the capacitor is infinite (open circuit) at zero frequency and
reactance of the inductor is zero (short circuit) at this frequency.

that is

Ci

Figure 20.15 Effect of R, L, and C on the
selectivity curve for the series resonant

ircuit.

ET 242 Circuit Analysis 11 - Series Resonance Boylestad

For the condition Q, = 10, the curves in Fig.20.17
appear as shown in Fig.20.18. Note that they each
peak at the resonant frequency and have a similar
shape.

In review,

Figure 20.17 Vg, Vi, Vi, and I versus

1. Vi and V| are at their maximum values at or near
frequency for a series resonant circuit.

resonance. (depending on Qy).

2. At very low frequencies, VC is very close to the
source voltage and V| is very close to zero volt,
whereas at very high frequencies, V; approaches the
source voltage and V. approaches zero volts.

3. Both V; and I peak at the resonant frequency and

have the same shapg. ‘ Figure 20.18 V., V., VI and I for a series resonant circuit where Q. = 10.

Ex. 20-1

a. For the series resonant circuit in Fig.20.19, find I, Vi, V,, and V. at resonance.

b. What is the Q, of the circuit?
c. If the resonant frequency is S000Hz, find the bandwidth.

d. What is the power dissipated in the circuit at the half-power frequencies?

EX. 20-2 The bandwidth of a series resonant circuit is 400 Hz.
a. If the resonant frequency is 4000 Hz, what is the value of Q,?
b. If R = 109, what is the value of X; at resonance?
c. Find the inductance L and capacitance C of the circuit.

a. Z, =R=2Q
__E _10rz0 —5A0°
Z, 20/0°

V., =E=10V£0°

[ Figure 20.19 Example 20.1.

V, = (1£0°)(X, £90°)

a. BW:fY or Q = J: _ 40004z _
0, BW  400Hz

b. Q\:);L or X, =0,R=(10)(10Q) = 100Q

c. X,=27fL or L= ap N9 =3.98 Hz
27f,  27(4000Hz)

1 1 1

¢ = or C= = =397.89 nF
27f.C 27 X, 2m(4000Hz)(100€2)

= (54£0°)(1022£90°) b O = % = % _s
=50V£90°
_ _ f. 5000Hz
V. = (1£0°)(X £ —90°) c. BW=/f,-fi= 0" s =1000 Hz
= (SAZO )(IOQZ -90 ) d. PHPF - leax = llrfme — (1](514)2(20) —25 W
=50V£-90° 2 2 2

EX. 20-3 A series R-L-C circuit has a series resonant frequency of 12,000 Hz.
a. If R =5, and if X at resonance is 3002, find the bandwidth.

ET 242 Circuit Analysis 11 - Series Resonance Boylestad

c. Find the cutoff frequencies.
d a. QS=£=%=6O and BW=£=W=2OOHZ
R 50 0, 60
b. Since Q; 210, the bandwidth is bisected by f,.Therefore,
BW

HL=1 +7 =12,000Hz +100Hz =12,100Hz

e _%= 12,000z ~ 100Hz = 11,900 Hz

ET 242 Circuit Analysis II — Series Resonance
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Ex. 20-4
a. Determine the Q, and bandwidth for the response curve in Fig.20.20.
b. For C = 101.5 nF, determine L and R for the series resonant circuit.
c. Determine the applied voltage.

[ Figure 20.20 Example204. |

a. The resonant frequency is 2800 Hz. At 0.707 times the peak value,

BW =200H: and @, =L 2800z,

BW  200Hz
1 1
b. =——— or L= = =31.83mH
2 27-/LC 47° f2C  4x*(2.8kHz)* (101.5nF)
0. _X or R _ X, _27(2800Hz)(31.832mH) _ 400
R 2 14
[ =% or E=1_.R=(200m4)(40Q) =8V
ET 242 Circuit Analysis I - Series Resonance Boylestad 16

Ex. 20-5 A series R-L-C circuit is designed to resonate at w, = 105 rad/s, have a
bandwidth of 0.15w, and draw 16 W from a 120 V source at resonance.
a. Determine the value of R.
b. Find bandwidth in hertz.
c. Find the nameplate values of L and C.
d. Determine the Qs of the circuit.
e. Determine the fractional bandwidth.

d 0 - X, _ 2nf L _ 27(15,915.49 Hz)(60mH ) —6.67
R R 900Q2
e. -1 0.15
6.67
£ Beylestad 17

HW 20-11 A series resonant circuit is to resonate at @, = 2rt x 10° rad/s and draw 20W
from a 120 V source at resonance. If the fractional bandwidth is 0.16.
a. Determine the resonant frequency in hertz.
b. Calculate the bandwidth in hertz.
c. Determine the values of R, L, and C.
d. Find the resistance of the coil if O, = 80.

@ 27x10°rad’s

== =202 TP 1 MH
e f 27 2z z
b. %=0.16:>BW=1‘5 —-f1=0.16 £ = 0.16(1 MHz) = 160 kHz

2 2 2
e p_FR_ p_¥r_020V) _ o

R P 20W

BW= R = L= 2 __ 7200 =0.716 mH
2xL 27BW  (6.28)(160 kHz)
1 1 1

=C=—F15—= ~ =35.38 pF
27VLC 47 7L 47%(10°Hz) (0. 716 mH)

7 27(10°
@ 0% g0mr- X _2afl_2x(10° HO)(O.716mH) _ . o
Re 80 80 30

ET 242 Circuit Analysis II - Series Resonance Boylestad 18
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Parallel Resonance Circuit - Introduction
O UTL I N ES The basic format of the series resonant circuit
. is a series R-L-C combination in series with
» Introduction to Parallel Resonance an applied voltage source. The parallel
resonant circuit has the basic configuration in
» Parallel Resonance Circuit Fig. 20.21, a parallel R-L-C combination in
parallel with an applied current source.
> U n|ty Power Factor (f"'o) Figure 20.21 Ideal parallel resonant network. r
» Selectivity Curve
» Effectof Q, =10
» Examples
| Key Words: Resonance, Unity Power Factor, Selective Curve, Quality Factor | Figure 2022 Practical parallel L-C network,
ET 242 Circuit Analysis Il — Parallel Resonance Boylestad 2 ET 242 Circuit Analysis Il — Parallel Resonance Boylestad 3




The first effort is to find a parallel Zrr =R+ X,
network equivalent for the series R-L I A S SR S
in Fi i i oz R+jX, R+x: 'RI+x]
branch in Fig.20.22 using the technique rer S )AL R Ay AL
in earlier section. That is v 1,1
R+ X ,[ﬁ] R, X,
R, X,
R+ X}
with x, =S4
P X[
as shown in Fig.20.23.

Figure 20.23 Equivalent parallel network for a series R-L combination. ‘

Parallel Resonant Circuit — Unity Power Factor, fp

For the network in Fig.20.25,

1 1 1 1 1 1
=+ +
Zl z Za R jXL,, - ch

2
S T
R jX,_V X,
1 1 1

Y, =

For unity power factor, the reactive component

must be zero as defined by

4 _ 2
X XL,,

-0 Where £, is the resonant frequency of
a parallel resonant circuit (for ), = /)
and f; is the resonant frequency as

Therefore, L. and X, =X,
X. X .

c X, determined by X, = X, for series
Substituting for X, _yields resonance. Note that unlike a series
RE+XE_ resonant circuit, the resonant
x, ¢ frequency f, is a function of
The resonant fiequency, f,, can be determined as follow: Wa—
2 2
7= 2mch fi— R’LC or f,=fi1- R'LC (20.31)

Parallel Resonant Circuit — Maximum Impedance, 7,

and Y, =—+jl ——
X XLp Figure 20.25 Substituting R = R//R;, for the network in Fig. 20.24.

At f= £, the input impedance of a parallel resonant
circuit will be near its maximum value but not quite its
maximum value due to the frequency dependence of R,,.
The frequency at which impedance occurs is defined by
fm and is slightly more than f,, as demonstrated in Fig.

ET162 Circuit Analysis — Parallel Resonance Boylestad 4

20.26. ‘ Figure 20.26 Z, versus frequency
for the parallel resonant circuit.
ET 242 Circuit Analysis Il — Parallel Resonance Boylestad 5

The frequency f,, is determined by differentiating the general equation for Z with respect to
frequency and then determining the frequency at which the resulting equation is equal to zero. The
resulting equation, however, is the following:

Note the similarities with Eq. (20.31). Since square root factor of Eq. (20.32) is always more than

the similar factor of Eq. (20.31), fm is always closer to fs and more than f,. In general,
_I. > u > .

Once fm is determined, the network in Fig. 20.25 can be used to determine the magnitude and
phase angle of the total impedance at the resonance condition simply by substituting /= f,, and

performing the required calculatiorTs. hat is

CTn N AL TTAC [y

Parallel Resonant Circuit — Selectivity Curve

Since the current | of the current source is constant for
any value of Z; or frequency, the voltage across the
parallel circuit will have the same shape as the total
impedance Z, as shown in Fig. 20.27. For parallel circulft,
the resonance curve of interest in V. derives from
electronic considerations that often place the capacitor a

Since the voltage across parallel elements is the same,
Vo=V, =12,

The resonant value of V. is therefore determined by the value of Z; and magnitude of the current
source |. The quality factar of the parallel resonant circuit continues to be determined as
following; R R IR, RIIR,

, =X, at resonance
»

For the ideal current source (Rs = < Q

ly large compared to R;,, we can
make the following approximation:

y and the quality factor by

The cutoff frepuencios £ and £ can ha datarminad ucina the sauivalant netwarle and tha quality
factor by 1 [1 1 4C 1 [1+ 1 4C

=——|=—-.—+—| and =—|= —+—
1= 4nc | R E L} fe= | R NR L

HT 242 Circuit Analysis II —EParaIIeI Resonance B& Figure 20.27 Defining the shape of the V,,m curve.

ET 242 Circuit Analysis Il — Parallel Resonance Boylestad 7




The effect of R, L, and C on the shape of the
parallel resonance curve, as shown in Fig.
20.28 for the input impedance, is quite
similar to their effect on the series resonance
curve. Whether or not R, is zero, the parallel
resonant circuit frequently appears in a
network schematic as shown in Fig. 20.28.
At resonance, an increase in R, or decrease in
the ratio L/R results in a decrease in the

resonant |mpedance with a correspondlnd Flgure 20.28 Effect of Ry, L, and, C on the parallel resonance curve.

4h
thereaseththeearrent:

Parallel Resonant Circuit — Effect of Q, =

The analysis of parallel resonant circuits is significantly more complex than encountered for
series circuits. However, this is not the case since, for the majority of parallel resonant circuits,
the quality factor of the coil Q, is sufficiently large to permit a number of approximations that
simplify the required analysis.

Effect of Q,_ = 10 — Inductive Resistance, XL,
X, =X, 0,210 and X, =X, 0,210

P

ET 242 Circuit Analysis Il — Parallel Resonance Boylestad 8

Effect of Q_ = 10 — Resonant Frequency, f,
(Unity Power Factor)

1
fp:f.s‘ b= 0,210 and fpE s

1
0, ~ 2zJIC O

Effect of Q,_ = 10 — Resonant Frequency, f
(Maximum V)

1

foEf, 1—;[&) o and =1, =
1

1

————— .0 Intotal f =f =f .
2aJLC 2% P 0,210

R ~ 2 . X L
|_P_| R, =20/R; 410 Substituting Q,=7; then R, R,C 0,210

ET 242 Circuit Analysis Il — Parallel Resonance Boylestad 9

X
ZTPERA'//Rp:Rs//QIZRI os10 and Q/:?L then Zr —Q1 10,210, R >R,

1
@ Qp == Ql !

X, X,

»

R e e A KA AT e

0, 2| L RC| 2z &

and Q,=0, 0,210, R >>R,

Ex. 20-6 Given the parallel network in Fig. 20.32 composed of “ideal” elements:

a. Determine the resonant frequency f,.

b. Find the total impedance at resonance

c. Calculate the quality factor, bandwidth, and cutoff frequencies f; and f; of the system.
d. Find the voltage V. at resonance.

e, Determine the currents /, and /.- at resonance.

a. The fact that R, is zero ohms results in
a very high O, (= X, | R,), permitting the
use of the following equation for f,

||_ and |C | A portion of Fig. 20.30 is reproduced in Fig. 20.31, with 7, defined as shown

Io =01 .10
and I, =01, 0,210

Figure 20.31 Establishing the relationship
between /..and /, and current /;.

ET 242 Circuit Analysis I — Parallel Resonance —Boytestad 0

1
fo=fi= —————=5.03kz
27[«/ LC 27[1/(1mH)(1 ) ;
b.  For the parallel reactive elements : Figure 20.32 ‘
2,12, = BN L=90%) [ 06, P
pee X, -X.) ’ X, 2af,L 2z(5.03kQ)(AmH )
but X.L: X, at rexonanee,. resulting in a zt.ero f’n the B = f, _ 5.03kHz _ 5.0
denominato r of the equation and a very high impedance 0, 316 .41
that can be approximat ed by an open circuit. Therefore, 11 1 acC
Zy =RNZNZc =R, =10kQ f1=4”C[R— R2+L]
d. Ve =1z, =(10mA)(10kQ) =100V 1 |' 1 1 4AuF)
= — +
g,=lo-le 1001 100V ey 4z(uF) | 10kQ | (10kQ)?  LmH
Fx, 24f,L 27r(5 03kHz)(LmH) T3eQ —5.03 kHz
V. 100V
I, =—S%=—""_-3164 1 101 1 4c
X, 3160, =20 f2:4nc[i+ RE | =504 Kz




Ex. 20-7

c. Determine the quality factor O,
d. Calculate the bandwidth.

= 10.

1 1
' 27JLC  27,[(0.3mH )(100 uF)

_ _1[RriC] _1[(20Q)* (100 1F)
P L e o

= 29.06 kHz

For the parallel resonant circuit in Fig. 20.33 with Ry = o Q:
a. Determine f,, f,,, and f,, and compare their levels.
b. Calculate the maximum impedance and the magnitude of the voltage V. at f,,.

e. Compare the above results with those obtained using the equations associated with ~ Q,

Figure 20.33 Example 20.7.

g o _ 2106k

0, 255
e. ForQ 210, f, = f, = f. = 29.06 kHz

=10.61Hz

R 200

Sy _ 29.06kHz

0, 274

BW = =10.61kHz (versus 10.61kHz above)

@), =)= 2L = W =274 (versus 2.55 above)

Z, = OFR, = (2.74)* - 20Q =150.15Q.£0°  (versus 159.34Q/ —15.17° above)
Ve, =1Z; = (2mA)(150.15Q) =300.3 mV"  (versus 318.68 mV above)

Ex. 20-8

a. Determine Q,.

For the network in Fig. 20.34 with £, provided:
b. Determine R,.  c. Calculate Z; .

d. Find C at resonance.

s

RIIR, R, 0 - X
X, X, TR

_ 27(29.06kHz)(0.3mH) _ 51Q _

= 25.58 kHz
7= 1—R’Ll = (29.06 kHz) 1—[%]
= 27.06 kHz y
c. R, =xQ; therefore

z
X

1
€ 24,C  2x(28.58kHz)(100 nF)

7, =(R + X )I-jXc at f=f,
, =2nf, L =2x(28.58kHz)(0.3mH ) = 53.87 Q
1

=55.69 Q

R, + jX, =20Q + j53.87 Q = 57.46Q /69.63°

ET 242 Circuit Analysis |1 — Parallel Resonance
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5 p.
e. Find 0, f. Calculate the B and cutoff frequencies.
27f L
a. Q= o 74"
RI RI
_ 27(0.04MHz)(LmH) _ 9512
10Q
b. Q,210. Therefore,
R, = OFR, = (25.12)(10Q) = 6.31kQ
c. ZT,, =R, //R,, =40 k0 //6.31 kO =5.45 kQ. ‘ Figure 20.34 Example 20.8.

13

Repeat Example 20.9, but ignore the effects of R, and compare results.

255 _ (57.469./69.63°)(55.69°~ — 90°)
20Q 200 = 159 340/ —15.17°
ET 242 Circuit Analysis |1 — Parallel Resonance V(m =1Z = (2mA)(159 .34 Q) = 318 .68 mV
d. Q,210. Therefore, 11 1 4C
et ¢St VR
YN
and C=—t_ _ 1 [ 1 [ 4(15.9mF)
Rl ) 47(15.9mF)| 5.45kQ | (5.45k)°  1mH
IO ) e =39 kHz
e. Q,210. Therefore, 1 1 1 AC
% _RIQR = | R NE L
"X, 2L
s sia =5.005x10°[183.486x10"° +7.977x10~]
= e oamiy i) %8 = 40.84 kHz
Ex. 20-10

a. f, is the same, 318.31 kHz.
b. ForR =0 Q
0,=0,=100 (versus 4.76)
_ 7y _ 318.31kHz
0, 100
d. Z, =R,=1MQ (versus 47.62 kQ)

»

= IZ,P =(2mA)AMQ) =2000V (versus 95.24 V)

=3.18 kHz (versus 66.87 kHz)

T CTTCUTT Ty ST T

lestad ‘ Figure 20.35 Example 20.9.14

HW 20-13 For the “ideal” parallel resonant circuit in Fig. 20.52:

a. Determine the resonant frequency (f,).
b. Find the voltage V. at resonance.
c. Determine the currents /; and I,

at resonance.

d. FindQ,.
‘ Figure 20.52 Problem 13.
1 2
E— = =159.16 kH
g J: 2aNfLC 2;:'J{G.1m]—1'3(10111:} z
b
/2 mAx 3
fDzma F2ke 2278 v =4y R, 2kQ kO
? d. Op=——"= =20
X; _,?fp.[ 10003
7 A% T -
e I = i - 4V _ 4V _ oma
X 2z f,L 10002
[ AN T
jL,:I_i:L: il =40 mA
X, l2xf,C 100Q Homework 20: 13-21

ET 242 Circuit Analysis I — Series Resonance

Boylestad

15




EET1222/ET242 Circuit Analysis Il

Transformers

Electrical and Telecommunications
Engineering Technology Department

Professor Jang

Prepared by textbook based on “Introduction to Circuit Analysis”
by Robert Boylestad, Prentice Hall, 11% edition.

OUTLINES

> Introduction to Transformers
» Mutual Inductance
> The Iron-Core Transformer

» Reflected Impedance and Power

Acknowledgement

I want to express my gratitude to Prentice Hall giving me the permission
to use instructor’s material for developing this module. I would like to
thank the Department of Electrical and Telecommunications Engineering
Technology of NYCCT for giving me support to commence and
complete this module. | hope this module is helpful to enhance our
students’ academic performance.

Sunghoon Jang

Transformers - Introduction

Mutual inductance is a phenomenon basic to the operation of the transformer, an
electrical device used today in almost every field of electrical engineering. This device
plays an integral part in power distribution systems and can be found in many electronic
circuits and measuring instruments. In this module, we discuss three of the basic
applications of a transformer: fo build up or step down the voltage or current, to act as
an impedance matching device, and to isolate one portion of a circuit from another.

ey Words: Transformer, Mutual Inductance, Coupling Coefficient, Reflected Impedang
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Transformers — Mutual Inductance

Figure 22.1 Defining the components of the transformer.
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For the primary of the transformer in Fig.22.1, an application of Faraday’s law result in

dg
e =N —2 (volts,V
B & ( )

P

revealing that the voltage induced across the primary is directly related to the number of turns in
the primary and the rate of change of magnetic flux linking the primary coil.

di
e, =L, % (volts, V) (22.2)
t

revealing that the induced voltage across the primary is also directly related to the self-
inductance of the primary and rate of change of current through the primary winding. The

magnitude of e, the voltage induced across the secondary, is determined by
d¢
e =N_—2 (volts,V
p =N, =5 ( )

Where Ns is the number of turns in the secondary winding and ®m is the portion of primary flux
@, that links the secondary, then 3, =9,

and

s

d
e, =N, %, (volts, V)
dt

The coefficient of coupling (k) between two coil is determined by

[
X

Since the maximum level of ®m is ®p, the coefficient of coupling between two coils can never
be greater than 1.

k(coefficient of coupling) =

ET 242 Circuit Analysis 11 — Transformers Boylestad 7

The coefficient of coupling between various coils is indicated in
Fig. 22.2. In Fig. 22.2(a), the ferromagnetic steel core ensures
that most of the flux linking the primary also links the
secondary, establishing a coupling coefficient very close to 1. In
Fig. 22.2(b), the fact that both coils are overlapping results in
the coil linking the other coil, with the result that the coefficient
of coupling is again very close to 1. In Fig. 22.2(c), the absence
of a ferromagnetic core results in low levels of flux linkage
between the coils. For the

secondary, we have
dg,
e, =kN, (volts, V')
dt
The mutual inductance between the two coils in Fig. 22.1 is
determined by
d
M =N, if’" (henries, H) or M =N, j” (henries , H)
i, i

Note in the above equations that the symbol for mutual
inductance is the capital letter M and that its unit of
measurement, like that of self-inductance, is the henry.

mutual inductance between two coils is proportional to the

instantaneous change in flux linking one coil due to an Figure 22.2 Windings having different

instaptaneous change ip cyrrent through the other cgil.oc, o coefficients of coupling. -
m y

In terms of the inductance of each coil and the coefficient of coupling, the mutual inductance is
determined by X
M =k\/L,L, (henries, H)

The greater the coefficient of coupling, or the greater the inductance of either coil, the higher the
mutual inductance between the coils. The secondary voltage e, can also be found in terms of the

mutual inductance if we rewrite Eq. (22.3) as

and, since M = N(d ®,/di,), it can also be written

Y Il d - Il
e, —M; (volts, V) and e, =M 2t (volts, V)

Transformers — The Iron-Core Transformer

An iron-core transformer under loaded conditions is shown in Fig. 22.4. The iron core will
serve to increase the coefficient of coupling between the coils by increasing the mutual flux @,,.

EX. 22-1 For the transformer in Fig. 22.3:
a. Find the mutual inductance M.

b. Find the induced voltage e, if the flux @, changes at the rate of 450 mWb/s.
c. Find the induced voltage e for the same rate of change indicated in part (b).
d. Find the induced voltages e, and e_if the current i, changes at the rate of 0.2 A/ms.

d
a. M=k\L,L; =0.6,/(200mH)(800mH) c. e =kN, :;" = (0.6)(100)(450mWb/s) = 27V

=0.6v16x1072 = 240 mH di
o d. e, =L, =(00mH)024/ms) =40V
b. e, =N, dt" = (50)(450mWb/s) = 22.5V

o
e. =M % = (240mH)(2004/5) = 48V
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The effective value of e, is £, = 444N, D,
which is an equation for the rms value of the
voltage across the primary coil in terms of the
frequency of the input current or voltage, the
number turns of the primary, and the maximum
value of the magnetic flux linking the primary.
The flux linking the secondary is
E,=4.44fN,®

m

Dividing equations, we obtain

E, 444fN.¢4, N,

‘ Figure 22.4 Iron-core transformer. ‘

The ratio N,/ N, a, is referred to as

= = N
E, 444/N g, N, the transformation ratio: a = VP

s

Revealing an important relationship for

If a <1, the transformer is called a
transformers:

step — up transformer and if a > 1,
The ratio of the magnitudes of the induced
voltages is the same as the ratio of the
corresponding turns. -

the transformer is called a

step —Vdawn transformer.




EXx. 22-2 For the iron-core transformer in Fig. 22.5:

a. Find the maximum flux @,,.
b. Find the secondary turn N,.

a. E,=444N 14, Therfore,
E 200V

g, =—r - =15.02mWb
444N [ (444)(500(60Hz)
E N
b. —L=—2"Therefore,
Ej Nx
N E
N, =—2— G007 600 turns
E, 2007

|
‘ Figure 22.5 Example 22.2.

The induced voltage across the secondary of the transformer in Fig. 22.4 establish a current i

through the load Z; and the secondary windings. This current and the turns N develop an mmf Ni,

that are not present under no-load conditions since i, = 0 and Ni, = 0.

Since the instantaneous values of ip and is are related by the turns ratio, the phasor quantities I,

and I are also related by the same ratio:

1
N,,=N], or N
I N,

The primary and secondary currents of a transformer are therefore related by the inverse ratios

of the turns.
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Transformers — Reflected Impedance and Power

In previous section we found that

vV, N 1
< =-_P—y and —P=N: =l
v, N, I, N, a

Dividing the first by the second, we have

VW _a Ve Ve T
11, 1a V. L,
However, since That is, the impedance of the primary circuit of

v, v, an ideal transformer is the transformation ratio
z,= T and 7, = 7 | squared times the impedance of the load. Note
that if the load is capacitive or inductive, the
reflected impedance is also capacitive or
inductive. For the ideal iron-core transformer,
%=a= js or E|I, =E]I

s P

and P, =P, (ideal condition )

out

P s

then  Z,=da’Z,
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Ex. 22-3 For the iron-core transformer in Fig. 22.6:
a. Find the magnitude of the current in the primary and the impressed voltage across|

HW 12-12

a. IfN, =400V, V,=1200, and V,=100 V,
find the magnitude of I, for the iron-core
transformer in Fig. 22.58 if Z, =9 Q +j12 Q.
b. Find the magnitude of the voltage V, and
the current I, for the conditions of part (a).

ET 242 Circuit Analysis IT — Transformers

Figure 22.6 Example 22.3.

the primary.
b. Find the input resistance of the transformer.
1
a. L= N
I, N,
1, = N, I = [i)(O.lA) =12.5m4
N, dor
Vv, =1,Z, = (0.14)(2kQ) = 200 V
Vv, N
also —£=—1
VL Ns
N 401
V,=—LV, =| — |(200V) =1600V
= ( o J( )
b. Z,=a’Z,
N
a=—2=8
N:
Z,=(8’(kQ) =R, =128 k2

Boylestad 10

| Figure 2212 Problem 12.

N, 400t 1
a. a=——= =
N, 1200f 3

K

2
Z,=a’Z, =(§j 9Q+ j12Q) =1Q + j1.333Q =1.667€Q2.£53.13°

V.,
» :i:M:a)A
Z, 1.667Q
b. I, =al, :%(60A) =204

Vv, =1,Z, =(204)(15Q) =300V

| Homework 22: 1-34,8,12
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