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Sinusoidal Alternating Waveforms 

Sinusoidal alternating waveform is the time-varying voltage that is 
commercially available in large quantities and is commonly called the ac 
voltage. Each waveform in Fig. 13-1 is an alternating waveform available 
from commercial supplies. The term alternating indicates only that the 
waveform alternates between two prescribed levels in a set time sequence. 
To be absolutely correct, the term sinusoid, square-wave, or triangular 
must be applied. 

Figure 13.1 Alternating waveforms. 
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Sinusoidal ac Voltage Generation 
Sinusoidal ac voltages are available from a variety of sources. The most common source is the 
typical home outlet, which provides an ac voltage that originates at a power plant. In each case, 
an ac generator, as shown in Fig. 13-2(a), is primary component in the energy-conversion 
process. For isolated locations where power lines have not been installed, portable ac generators 
[Fig. 13-2(b)] are available that run on gasoline. The turning propellers of the wind-power station 
[Fig. 13-2(C)] are connected directly to the shaft of ac generator to provide the ac voltage as one 
of natural resources. Through light energy absorbed in the form of photons, solar cells [Fig. 13-
2(d)] can generate dc voltage then can be converted to one of a sinusoidal nature through an 
inverter. Sinusoidal ac voltages with characteristics that can be controlled by the user are 
available from function generators, such as the one in Fig.13-2(e). 

Figure 13.2 Various sources of ac power; (a) generating plant; (b) portable ac generator; (c) wind-
power station; (d) solar panel; (e) function generator. ET 242 Circuit An  – 5 

Sinusoidal ac Voltage Definitions 

FIGURE 13.3 Important parameters for a sinusoidal voltage. 

The sinusoidal waveform in Fig.13-3 with its additional notation will now 
be used as a model in defining a few basic terms. These terms, however, can 
be applied to any alternating waveform. It is important to remember, as you 
proceed through the various definitions, that the vertical scaling is in volts 
or amperes and the horizontal scaling is in units of time. 

Waveform: The path traced by a quantity, such as the voltage in Fig. 13-3, plotted 
as a function of some variable such as time, position, degrees, radiations, 
temperature, and so on. 

Instantaneous value: The magnitude of a waveform at any instant of time; denoted by 
lowercase letters (e1, e2 in Fig. 13-3) 

Peak amplitude: The maximum value of a waveform as measured from its 
average, value, denoted by uppercase letters.  For the waveform in Fig. 13-3, the 
average value is zero volts, and Em is defined by the figure. 

Peak-to-peak value: Denoted by E or V (as shown in Fig. 13-3), the full p-p p-p 
voltage between positive and negative peaks of the waveform, that is, the sum of 
the magnitude of the positive and negative peaks. 

Periodic waveform: A waveform that continually repeats itself after the same time 
interval. The Fig. 13-3 is a periodic waveform. 

Period (T): The time of a periodic waveform. 

Cycle: The portion of a waveform contained in one period of time. The cycles 
within T1, T2, and T3 in Fig. 13-3 may appear different in Fig. 13-3, but they are all 
bounded by one period of time and therefore satisfy the definition of a cycle.

ET 242 Circuit Analysis II – Sinusoidal Alternating Waveforms Boylestad 6 

FIGURE 13.4 Defining the cycle and period of a sinusoidal 

– 

Frequency (f): The number of cycles that occur in 1 s. The frequency of the 
waveform in Fig. 13-5(a) is 1 cycle per second, and for Fig. 13-5(b), 2½ cycles per 
second. If a waveform of similar shape had a period of 0.5 s [Fig. 13-5 (c)], the 
frequency would be 2 cycles per second. 1 hertz (Hz) = 1 cycle per second (cps) 

FIGURE 13.5 Demonstration of the effect of a changing frequency on the period of a sinusoidal 
waveform 
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Ex. 13-1 For the sinusoidal wavefor  m in Fig. 13-7. 
a. What is the peak value? Frequency 
b. What is the instantaneous value at 0.3 s and 0.6 s? 
c. What is the peak-to-peak value of the waveform? Since the frequency is inversely related to the period–that  is, as one 
d. What is the period of the waveform? increases, the other decreases by an equal amount–the two can be related by 
e. How many cycles are shown? the following equation: 
f. What is the frequency of the waveform? 1 1 

f =  f = Hz T = 
T T = second (s) f

Ex. 13-2 Find the periodic waveform with a frequency of 
a. 60 Hz b. 1000Hz 

1 1 a. T =  =  ≅  0.01667 s or 16.67 ms
FIGURE 13.7 f 60 Hz 

1 1 a. 8 V  b. At 0.3 s, –8 V; at 0.6 s, 0 V. c. 16 V b. T =  =  =  10 −3 s =  1 ms
f 1000 Hz 

d. 0.4 s e. 3.5 cycles f. 2.5 cps, or 2.5 Hz 
ET 242 Circuit Analysis  II – Sinusoidal Alternating Waveforms  Boylestad 8 ET 242 Circuit Analysis  II – Sinusoidal Alternating Waveforms  Boylestad 9 

Ex. 13-3 Determine the frequency of the waveform in Fig. 13-  9. The Sinusoidal Waveform 
Consider the power of the following statement: 

From   the figure, T = (25 ms – 5 ms) or (35 ms – 15 ms) = 20 ms, and The sinusoidal waveform is the only alternating waveform whose shape is 

1 1
unaffected by the response characteristics of   R, L, and C element. 

f =  =  =  50 Hz In other word, if the voltage or curren  t across a resistor  , inductor, or capacitor is 

T 20×10 −3 s sinusoidal in nature, the resulting current or voltage for each will also have 
sinusoidal characteristics, as shown in Fig. 13-12. 

FIGURE 13.12 The sine wave is the onl  y 
alternating waveform whose shape is not 
altered b  y the response characteristics of a 

FIGURE 13.9 pure resistor, indicator, or capacitor. 

ET 242 Circuit Analysis  II – Sinusoidal Alternating Waveforms  Boylestad 10 ET162 Circuit Analysis– Ohm’s Law Boylestad 11
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FIGURE 13.13 Defining the radian. 

The unit of measurement for the horizontal axis can be time, degree, or radians. 
The term radian can be defined as follow: If we mark off a portion of the 
circumference of a circle by a length equal to the radius of the circle, as shown in 
Fig. 13-13, the angle resulting is called 1 radian. The result is 

1 rad = 57.296° ≈ 57.3° 

where 57.3° is the usual 
approximation applied. 

One full circle has 2π radians, as shown in 
Fig. 13-14. That is 

2π rad = 360° 

2π = 2(3.142) = 6.28 

2π(57.3°) = 6.28(57.3°) = 359.84° ≈ 360° 

FIGURE 13.14 There are 2π radian in one full circle of 360°.  – 

A number of electrical formulas contain a multiplier of π. For this reason, it is 
sometimes preferable to measure angles in radians rather than in degrees. 

The quantity is the ratio of the circumference of a circle to its diameter. 
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FIGURE 13.15 Plotting a sine 
wave versus (a) degrees and (b) 
radians 

For comparison purposes, two sinusoidal 
voltages are in Fig. 13-15 using degrees 
and radians as the units of measurement 
for the horizontal axis.

 – 14 

In Fig. 13-16, the time required to complete one 
revolution is equal to the period (T) of the 
sinusoidal waveform. The radians subtended in 
this time interval are 2π. Substituting, we have 

ω = 2π/T or 2πf (rad/s) 

FIGURE 13.17 Demonstrating the 
effect of ω on the frequency and 
periodFIGURE 13.16 Generating a sinusoidal 

waveform through the vertical projection of a 
rotating vector 

Ex. 13-4 Determine the angular velocity of a sine wave having a frequency of 60 Hz. 

ω = 2πf = (2π)(60 Hz) ≈ 377 rad/s 

Ex. 13-5 Determine the frequency and period of the sine wave in Fig. 13-17 (b). 
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Ex. 13-6 Given ω  = 200 rad/s, determine how long it will take the sinusoidal 
waveform to pass through an angle of 90°. General Format for the Sinusoidal Voltage or Current 

α  = ωt, and  t = α  / ω  
The basic mathematical format for the sinusoidal waveform is 

However , α  must be substitute d as π / 2 (=  90o )
A sin α  = A sin ωt 

sin ce ω  is in radians per sec ond : m m 

where Am is the peak value of the waveform and α  is the unit of measure for the α  π  / 2 rad πt =  = = s = 7.85 ms horizontal axis, as shown in Fig. 13-18. 
ω  200 rad / s 400

For electrical quantities such as current 
Ex. 13-7 Find the angle through which a sinusoidal waveform of 60 Hz will pass and voltage, the general format is 
in a period of 5 ms  . 

i = Im sin ωt = I sin α  
α  = ωt, or m 

e = E ω
α ft = 1 ad m sin t = Em sin α  

 = 2π  (2π)(60 Hz)(5 × 0-3 s) = 1.885 r
where the capital letters with the 

If not careful, you might be tempted to int erpret the answer as 1.885o . subscript m represent the amplitude, 
o and the lowercase letters I and e 

However , α (  o 180) =  (  1.885 rad )  =108o represent the instantaneous value of 
π rad FIGURE 13.18 Basic sinusoidal function. current and voltage at any time t. 

ET 242 Circuit Analysis  II – Sinusoidal Alternating Waveforms  Boylestad 16 ET 242 Circuit Analysis  II – Sinusoidal Alternating Waveforms  Boylestad 17 

Ex. 13-8 Given e = 5 sin α  , determine e at α  = 40° and α  = 0.8π. Phase Relations 
For α  = 40 o  is shifted to the right  or left of 0°, the expression becomes   , If the waveform 

e =  5sin 40o = 5(0.6428) = 3.21V Am sin (ωt ±  θ) 
For α  =  0.8π , where θ  is the angle in degrees or radiations that the waveform has been shifted. 

o If the waveform passes through the If the waveform passes through the 180α  ( o ) =  (0.8π ) =144o horizontal axis with a positive going slope horizontal axis with a positive going 
π before 0°, as shown in Fig. 13-27, the slope after 0°, as shown in Fig. 13-28  , 

and e =  5sin144o = 5(0.5878) = 2.94V expression is the expression is 

Am sin (ω  t +  θ) Am sin (ωt –  θ) 
Ex. 13-11 Given i = 6×10-3 sin 100t , determine i at t = 2 ms. 

α  =  tω  =  1000t =  (1000 rad / s)(2×10 −3 s) =  2 rad 
180 o 

α ( o ) =  (2 rad ) =  114.59 o
π rad 

i =  (6×10 −3 )(sin 114.59 o ) =  (6 mA)(0.9093) =  5.46 mA FIGURE 13.27 Defining the phase shift for a FIGURE 13.28 Defining the phase shift for a 
sinusoidal function that crosses the horizontal axis sinusoidal function that crosses the horizontal axis 

ET 242 Circuit Analysis  II – Sinusoidal Alternating Waveforms  Boylestad 18 with a positive slope before 0°. with a positive slope after 0°. 
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If the waveform crosses the horizontal axis with a positive-going slope 90° (π/2) The oscilloscope is an instrument that will display the sinusoidal alternating 
sooner, as shown in Fig. 13-29, it is called a cosine wave; that is waveform in a way that permit the reviewing of all of the waveform’s characteristics. 

The vertical scale sin (ωt + 90°)=sin (ωt + π/2) = cos πt always in unitsPh of asetime.  Relations is set to display voltage– The Osci levels, whereas the hlloscopeorizontal scale is 

or sin ωt = cos (ωt – 90°) = cos (ωt – π/2) Ex. 13-13 Find the period, frequency, and peak value of the sinusoidal wa  veform 
appearing on the screen of the oscilloscope in Fig. 13-36. Note the sensitivities 
provided in the figure. 

One cycle span 4 divisions . Therefore , the period is 

⎛  50 µs ⎞T =  4 div.⎜  ⎟ =  200 µs 
⎝  div ⎠  

and the frequency is 
1 1f = =  kHz

200 ×10 −6 =  5 
T s 

cos α  = sin (α  + 90°)  FIGURE 13.29 Phase relationship The vertical height above the horizontal axis between a sine wave and a cosine wave. 
sin α  = cos (α  – 90°)  encompasse s 2 divisions , Therefore , 

 sin (–α) = –sin α– si  n  α ± 1 0°)     = sin (α  8 ⎛  0.1V ⎞V =  2 div.⎜ ⎟ =  0.2 V cos (–α) = cos α   
– co  s  α  = sin (α 270°) = sin (α – 90°)      + 

m 
  ⎝  div. ⎠  FIGURE 13.36 
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An oscilloscope can also be used to make phase measurements between two sinusoidal 
waveforms. Oscilloscopes have the dual-trace option, that is, the ability to show two Average Value 
waveforms at the same time. It is important that both waveforms  must have the sam  e 

The concept of   the average value is an important one in  most technical fields. In frequency. The equation for the phase angle can be introduced using Fig. 13-37. 
Fig. 13-38(a), the average height of the sand may be required to determine the 

First, note that each sinusoidal function volume of sand available. The average height of the sand is that height obtained if 
has the same frequency, permitting the use  the distance from one end to the other is maintained while the sand is leveled off, as 
of either waveform to determine the period. shown in Fig. 13-38(b). The area under the mound in Fig. 13-38(a) then equals the 
For the wa  veform chosen in Fig. 13-37, the area under the rectangular shape in Fig. 13-38(b) as determ  ined by A = b × h. 
period encomp  asses 5 divisions at 0.2 
ms/div. The phase shift between the 
waveforms is 2 divisions. Since the full 
period represents a cycle of 360°, the 
following ratio can be formed: 

FIGURE 13.37 Finding the phase angle between 
waveforms using a dual-trace oscilloscope. 

360 o θ  
=  

T (# of div.) phase shift (  #of div.)  ( 2 div .) θ  = × 360 o = 144 o

(  )  phase shift # div.   ( of 5 div .)  
θ  =  ×360 o 

T (  and e leads i by 144 o 

# FIGURE 13.38 Defining average value. FIGURE 13.39 Effect of FIGURE 13.40 Effect of depressions 
ET 242 Circuit Analysis II– 

ofSinusoidadiv.l A)lte  rnating Waveforms Boylestad 22 distance (length) on average value. (negative excursions) on average value. 
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Ex. 13-15 Determine the average value of the waveforms over one full cycle: 
Ex. 13-14 Determine the average value of the waveforms in Fig.13-42. a. Fig. 13-44. 

b. Fig. 13-45 

(+ 3V )(4 ms)+ (−1V )(4 ms)a . G =  
8 ms 

8 V 
=  =1 V

8 
FIGURE 13.44 

FIGURE 13.42 

a. By inspection, the area above the axis equals the area below over one cycle, 
resulting in an average value of zero volts. 

(10 V )(1 ms)+  (−10V )(1 ms) 0 G ( average value) =  =  = 0 V 
2 ms 2 

FIGURE 13.45 

(14 V )(1 ms) +  (−6 V )(1 ms) 8 V (−10 V )(2 ms) + (4 V )(2 ms) + (−2 V )(2 ms) −16 V b . G (average value) =  =  = 4 V    b . G =  =  =  −1.6V2 ms 2 10 ms 10 
ET 242 Circuit Analysis  II – Sinusoidal Alternating Waveforms  Boylestad 24 ET 242 Circuit Analysis  II – Sinusoidal Alternating Waveforms  Boylestad 25 

Ex. 13-16 Determine the average value of the sinusoidal waveforms in Fig. 13-51. Effective (rms) Values 
The average value of a pure sinusoidal This section begins to relate dc and ac quantities with respect to the power delivered to 
waveform over one full cycle is zero. a load. The average power delivered by the ac source is just the first term,  since the 

( +  Am ) + (−A )G  m average value of a cosine wave is zero even though the wave may have twice the = =  0 V
2 π frequency of the original input current waveform. Equation the average power   

delivered by the ac generator to that delivered by the dc source, 
FIGURE 13.51 II dc =  m = 0.707 I

Ex. 13-17  the waveforms in Fig. 13-52. t 2 m 

Determine the average value of Which, in words, s ates that 

The equivalent dc value of a sinusoidal current or voltage is 1 / √2 or 0.707 of its 
peak value. 

( +  2 mV)+ (−16mV)G =  =  −7 mV The equivalent dc value is called the rms or effective value of the sinusoidal quantity. 
2 1 Similarly, 

rms =Results in an average or dc level of –  mV, I   7 I m = 0.707 I m

as noted by the dashed line in Fig. 13-52. 2 I m =  2 Irms =1.414 I
1 rms

E rms =  E = 0.707 E
FIGURE 13.52   2 m m E m = 2 Erms =1.414 Erms

ET 242 Circuit Analysis  II – Sinusoidal Alternating Waveforms  Boylestad 26 ET 242 Circuit Analysis  II – Sinusoidal Alternating Waveforms  Boylestad 27 
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Ex. 13-21 The 120 V dc source in Fig. 13-59(a) delivers 3.6 W to the load. 
Ex. 13-20 Find the rms values of the sinusoidal waveform in each part of Fig. 13-58. Determine the peak value of the applied voltage (Em) and the current (Im) if the ac 

source [Fig. 13-59(b)] is to deliver the same power to the load. 

FIGURE 13.58 

12 ×10−  3 A b. rms = 8.48  mA   I FIGURE 13.59 

a . Irms =  =  8.48mA
requency did not change the P 3.6W 2 Note that f P dc =  Vdc Idc and Idc =

dc = = 30 mAeffective value in (b) compared to (a). V dc 120 V 
169.73Vc . V    rms = =120 V I m = 2 Idc = (1.414)(30 mA) = 42.42 mA

2 
E m =  2 Edc = (1.414)(120v) =169.68mA

ET 242 Circuit Analysis  II – Sinusoidal Alternating Waveforms  Boylestad 28 ET 242 Circuit Analysis  II – Sinusoidal Alternating Waveforms  Boylestad 29 

Ex. 13-22 Find the rms value of the waveform in Fig. 13-60. Ac Meters and Instruments 

(3)2 (4) +  (−1)2 (4) It is important to note whether the DM  M in use is a true rms meter or simply meter 
Vrms =  where the average value is calculated to indicate the rms level. A true rms meter reads 8 the effective value of any waveform and is not limited to only sinusoidal waveforms. 

40 
= = 2.24 V Fundamentally, conduction is permitted through the diodes in such a manner as to   

8 convert the sinusoidal input of Fig. 13-68(a) to one having been effectively “flipped 
over” by the bridge configuration. The resulting waveform in Fig. 13-68(b) is called a 

FIGURE 13.61 FIGURE 13.60 full-wave rectified waveform. 
Ex. 13-24 Determine the average and rms values of the square wave in Fig. 13-64. 

FIGURE 13.64 By inspection, the average value is zero. 

(40)2 (10×  10−  3 ) + (40)2 (10×10−3 )Vrms =  
20 ×  10−  3 

FIGURE 13.68 

(  32,000× (a) Sinusoidal input; 
  10−  3 )  

=  (b) full-wave rectified 
20 ×  10−  3 signal. 

2 V + 2V 4 V 2 V
=  1600 = 40V G =  m m =  m = m = 0.637 Vm 

ET 242 Circuit Analysis  II – Sinusoidal Alternating Waveforms  Boylestad 30 ET 242 Circuit Analysis II – Sinusoi2 daπl A  lternating Wavefor2 ms π Boyπ lestad 31 
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Forming the ratio between the rms and dc levels results in HW 13-37 Find the average value of the periodic waveform in Fig. 13.89. 
V rms 0.707V 

=  m ≅1.11
V dc 0.637V m (6V )(1s) +  (3V )(1s) − (3V )(1s)G =  Meter indication = 1.11 (dc or average value) Full-wave 3 s 

Ex. 13-25 Determine the reading of each meter for each situation in Fig. 13-71(a) &(b). 6 V 
=  = 2 V

3 
For Fig. 13-71(a), situation (1): 
Meter indication = 1.11(20V) = 22.2V Figure 13.89 Problem 37. 

HW 13-42 Find the rms value of the following sinusoidal waveforms: 
For Fig.13-71(a), situation (2): 
Vrms = 0.707Vm = 0.707(20V) = 14.14V a. v = 140sin(377t + 60°) a. Vrms = 0.7071(140 V ) = 98.99 V 

b. i =  6 ×10−3 sin(2π1000t) b. I rms =  0.7071(6mA) =  4.24 mA For Fig. 13-71(b), situation (1): 
Vrms = Vdc = 25 V c. v =  40×10−6 sin(2π5000t +  30°) c. Vrms =  0.7071(40 µV ) =  28.28 µV 

For Fig.13-71(b), situation (2): Homework 13: 10-18, 30-32, 37  , 42, 43 
Vrms = 0.707Vm = 0.707(15V  ) ≈  10.6V 

ET 242 Circuit Analysis  II – Sinusoidal Alternating Wavefor msF iFIGURgure 13.69 BoyExaE 13.7m1lestadple 13.25. 2 ET 242 Circuit Analysis  II – Sinusoidal Alternating Waveforms  Boylestad 33 
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INTRODUCTION A close examination of the sinusoidal waveform will also indicate that the greatest 
change in x occurs at the instants ωt = 0, ,π  and 2π. The derivative is therefore a 

The response of the basic R, L, a  nd C elements to a sinusoidal voltage and maximum at  these points. At  0 and 2π, x increases at its greatest rate, and the 
derivative is given positive sign since x increases with time. At , creases at en π dx/dt decurrent are examined in this class, with special n  ote of how frequ  cy 
the same rate as it  increases at 0 and 2 ,π  but the derivative is given a negative sign affe  cts the “opposing” characteristic of each element. Phasor nota  tion is since x decreases with time. For various values of  ωt between these maxima and then introduced to establish a method of analysis that permits a direct minima, the derivative will exist and have values from the minimum to the  

correspondence with a number of the methods, theorems, and concepts maximum inclusive. A plot of the derivative in Fig. 14-2 shows that 
introduced in the dc chapter. 

the derivative of a sine wave is a cosine wave. 

DERIVATIVE 
The derivative dx/dt is defined as the rate 
of change of  x with respect to time. If x 
fails to change at a particular instant, dx 
= 0, and the derivative is zero. For the 
sinusoidal waveform, dx/dt  is zero only 
at the positive and negative peaks (ωt = 
π/2 and ⅔π in Fig. 14-1), since x fails 
to change at these instants of time. The 
derivative dx/dt is actually the slope of Figure 14.1 Defining those points in a sinusoidal Figure 14.2 Derivative of the sine wave o  f Fig. 14-1. 

ET 242 Circuitthe graph at any Analysis– Res instant of  ponsetim of Be. asic Elements waveform
d i  ti

Boylestad that have maximum and minimu  m 3 ET 242 Circuit Analysis – Response of Basic Element  s Boylestad 4 
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The peak value of  the cosine wave is directly related to the frequency of the Response of Resistor to an ac  Voltage or Current original waveform. The higher the frequency, steeper the slope at the horizontal 
axis and the greater the value of  dx/dt,   as shown in Fig. 14-3 for two different For power-line frequencies, resistance is, for all practical purposes, unaffec  ted by 
frequencies. In addition, note that the frequency of the applied sinusoidal voltage or current. For this frequenc  y 
the derivative of a sine wave has the same period and frequency as the original region, the re  sistor R in Fig. 14-4 can be treated as a constant, and Ohm’s law can 
sinusoidal waveform. be applied as follow.   For v = Vm sinω t, 

v V sin ω  V 
=  = m t

= m ω = ωFor the sinusoidal voltage i sin t I sin t
R R R m 

e(t) = Em sin ( ω t ± θ ) Vwhere I =  m =
T m and V I R

he derivative can be found R m m

directly by differentiation to 
produce the following: FIGURE 14.4 Determining the sinusoidal response for a resistive element. 

d{e(t)}/dt  = ω E cos( ω t ± θm ) A plot of v and i in Fig. 14-5 reveals that 
= 2π f E t±θm cos( ω ) For a purely resistive element, the voltage across 

and the current through the element are in phase, 
with their peak values related by Ohm’s law. FIGURE 14.3 Effec  t of frequency on the peak value of the derivative. 

ET 242 Circuit Analysis – Response of Basic Element  s Boylestad 5 FIGURE 14.5 Two voltage and current of a resistive element are in phase. 

Response of Inductor to an ac Voltage or Current 
For the series configuration in Fig. 14-6, the voltage velement of the boxed-in element 
opposes the sour  ce e and thereby reduces the magnitude of the current i. The magnitude 
of the voltage across the element is determined by the opposition of the element to the 
flow of charge, or current i. For a resistive element, we  have found that the opposition 

FIGURE 13.4 Defining the cycle and period of a sinusoidal 
wavef .orm is its resistance and that velement and i are determined by velement = iR. 

Frequency (f): The number of cycles that occur in 1 s. The frequency of the The inductance voltage is directly related to the frequency and the inductance of the 
waveform in Fig. 13-5(a) is 1 cy  cle per second, and for Fig. 13-5(b), 2½ cy  cles per coil. For increasing values of  f and L in Fig. 14-7, the magnitude of  v increases due 
second. If a waveform of similar shape had a period of  0.5 s [Fig. 13-5 (c)], the L 

the higher inductance and the greater the rate of change of the flux linkage. Using 
frequency would be 2 cycles per   second.  1 hertz (Hz) = 1 cycle per second (cps) similarities between Figs. 14-6 and 14-7, we find that increasing levels of vL are 

directly related to increasing levels of opposition in Fig. 14-6. Since vL increases with 
both ω (= 2 fπ ) and L, the opposition of an inductive element is as defined in Fig. 14-7. 

FIGURE 14.6 Defining the opposition of an FIGURE 14.7 Defining the parameters that 
element of the flow of charge through the element. determine the opposition of an inductive element to FIGURET162 CircuE 13.5 it AnalysDemis– Ohm’s Law onstration of the effect of a changing frequenc  y on the period of a sinusoidal Boylestad 7 ET 242 Circuit Analysis – Response of Basic Element  s 
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For the inductor in Fig .14 −  8, If a phase angle is included in the sinusoidal expression  for iL, such as 

di i = I t ± θ ) 
v L 

L = L
L m sin(ω

 
dt then v = ωL LIm sin(ω t ± θ + 90° ) 

The opposition established by an inductor in an sinusoi  dal network is directly and, applying differentiation, related to the product of the angular velocity and the inductance. The qua  ntity ωL, 
di L d called the reactance of an inductor, is symbolicall  y represented by X and is =  ( Im sinω t  ) =ω I cos t L 
dt dt m ω

measured in ohms; 
diTherefore , v   L L 

L = = L(ω I  cosω t) =ω LI cosω t that is , 
dt m m FIGURE 14.8 Investigating 

the sinusoidal response of an X L =  ω  
m ω o 

L ( ohms , Ω )
or vL =  V sin( t  +90 ) =V cos t inductive elemm (ω ) ent. 

In an Ohm ' s law format , its magnitude can be det ermin ed from
where Vm =  ω  LIm V
Note that the peak value of  vL is directly X L =  m ( ohms , Ω )
related to ω π I (= 2 f) and L as predicted in m 

the discussion previous slide. A plot of vL Inductive reactance is the opposition to the flow of current, which results in the 
and iL in Fig. 14-9 reveals that continual interchange of energy between the source and the magnetic field of 
for an inductor, v leads i by 90°, or i inductor. In other word  s, inductive reactance, unlike resistance, does not 

L L L FIGURE 14.9 For a pure inductor, the voltage lags v by 90°L . dissipate electrical energy. 
ET 242 Circuit Analysis – Response of Basic Element  s Boylestadacross the coil leads the current through the coil b  23y ET 242 Circuit Analysis – Response of Basic Element  s 
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The current of a capacitor is therefore directly to the frequency and capacitance of  
Response of Capacitor to an ac Voltage or Current the capacitor. An increase in either quantity results in an increase in the current of 

the capacitor. For the basic configuration in Fig. 14-10, we are interested in 
For the capacitor, we will determine i for a particular voltage across the element. determining the opposition of the capacitor. Since an increase in current 
When this approach reaches its conclusion, we will know the relationship between corresponds to a decrease in opposition, and ic is proportional to ω and C, the 
the voltage and current and can determine the opposing voltage (velement) for any opposition of a capacitor is inversely related to ω and C. 
sinusoidal current i. For the capacitor of Fig . 14 − 11, FIGURE 14.10 Defining the parameters that determine the  
For capacitive networks, the voltage across the capacitor is limited by the rate at opposition of a capacitive element to the flow of charge. 

dvwhich charge can be deposited on, or released by, the plates of the capacitor during i C 
C =  C

the charging and discharging phases, respectively. In other words, an instantaneous dt 
change in voltage across a capacitor is opposed  by the fact that there is an element of and , applying differenti ation ,
tim  e required to deposit charge on the plates of a capacitor, and V = Q/C. dv C d 

=  ( V sinω t  ) = ωV cosω tSince capacitance is a measure of the rate at which a capacitor will store charge on dt dt m m

its plate, Therefore , 
for a particular change in voltage across the capacitor, the greater the value of 
capacitance, the greater the resulting capacitive current. dvi = C C 

C  = C ( ω  Vm cosω t) = ωCV cos t
In addition, the fundamental equation relating the voltage across a capacitor to the dt m ω

current of a capacitor [i = C(dv/dt)] indicates that or iC =  Imsin( ω t  + 90o )
for particular capacitance, the greater the rate of change of voltage across the 
capacitor, the gre where Im =  ωater the capacitive current.   CVm FIGURE 14.11 Investigating the sinusoidal 

ET 242 Circuit Analysis – Response of Basic Element  s Boylestad 11 ET 242 Circuit Analysis – Response of Basic Element  s Bo yresplestadonse of a capacitive element. 12
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Ex. 14-1 The voltage across a resistor is indicated. Find the sinusoidal expression 
A plot of vC and iC in Fig.14-12 reveals that for the current if the resistor is 10 Ω. Sketch the curves for v and i. 
for a capacitor, i °C leads vC by 90 . a. v = 100sin377t 

b.    v = 25sin(377t + 60°) 
If a phase angle is included in the sinusoidal expression for vC, such as 

vC = V sin(ω  t ± θ  ) Va . I =  m 100 V
m = = 10 A

then iC = ωCVm sin(ω  t ± θ  + 90° ) 
m R 10 Ω

The quantity 1 v and i are in phase/ ( ω  C, called the reacitance of ),
resulting in

a capacitor , is symbolically represented by i =  10sin 377 t FIGURE 14.13 
X C and is measured in ohms; that is, Vb . I =  m 25 V

m = = 2.5 A
1 R 10 Ω

X C =  (ohms, Ω)
ω ( v are in phase ),  C and i

resulting inIn an Ohm' s law format , its magnitude
i =  2.5sin( 377 t + 60 o ) FIGURE 14.14 

can be determined from
Ex. 14-2 The current through a 5 Ω  resistor is given. Find the sinusoidal expression 

V
 m for the voltage across the resistor for i = 40sin(377t + 30 ). X C = ( ohms, Ω) °

I FIGURE 14.12 The current of a purely capacitive 
m Vm = ImR = (40 A)(  5 Ω) = 200 (v and i are in phase), resulting in 

element leads the voltage across the element b  y 90°. 
v = 200sin(377t + 30°) 

ET 242 Circuit Analysis – Response of Basic Element  s Boylestad 13 ET 242 Circuit Analysis – Response of Basic Element  s Boylestad 14 

Ex. 14-3 The current through a 0.1 H coil is provided. Find the sinusoidal Ex. 14-4  The voltage across a 0.5 H coil is provided below. What is the sinusoidal 
expression for the voltage across the coil. Sketch the curves for v and i curves. expr  ession for the current?   v = 100 sin 20 t 

a. i = 10 sin377t 
b.    i = 7 sin(377t – 70°) V 100V X L =ωL  = (20 rad / s)(0.5 H ) =10Ω and I m 

m = = =  10 A
X 10 Ω  a. XL = ωL = (377 rad/s)(0.1 H) = 37.7 Ω  L 

o 
Vm = ImXL = (10 A)(37.7 Ω) = 377 V and we know the i lags v by 90 . Therefore,

and we know that for a coil v leads i by 90°. i =  10 sin(20t −90o )
Therefore, 

Ex. 14-5 The voltage across a 1 μF capacitor is provided below. What is the 
v =377 sin(377t + 90°) FIGURE 14.15 sinusoidal expression for the current?  Sketch the v and i curves. v = 30 sin 400 t 

6 
b.    X ωL = L = (377 rad/s)(0.1 H) = 37.7 Ω  1 1 10 ΩX C =  =

× −  
=  =

ωC ( 400 rad/s)(1  10 6 2500Ω
) 400 

Vm = ImXL = (7 A)(37.7 Ω) = 263.9 V 
V 30 V

and we know that for a coil v leads i by 90°. I  m 
m = = = 0.0120 A = 12 A

X 2500 Ω
Therefore, C 

and we know that for a capacitor i leads v by 90o . 
v = 263.9 sin(377t – 70°  + 90°) 

Therefore , i =  12×10−  3 sin(400t + 90o )
and v = 263.9 sin(377t + 20°) FIGURE 14.16 

ET 242 Circuit Analysis – Response of Basic Element  s Boylestad 15 ET 242 Circuit Analysis – Response of Basic Element  s Boylestad FIGURE 14.17 16
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b . Since v leads i by 90 o ,
Ex. 14-6 The current through a 100 μF capacitor is given. Find the sinusoidal 
expression for the voltage across the capacitor. i = 40 sin(500t + 60° ) a . Since v and i are in phase, the element is an inductor , 

V 1000 V
1 1 106 Ω  102 Ω the element is a resistor, and and X m 

L =  = = 200 Ω
X C = =  −6 = 4 = =  20 Ω I 5 A

ωC (500 rad/s)(100 ×10 ) 5×10 5 V 100V m 

R =  m = = 5 Ω So that X =  ω  L = 200 Ω or
V m =  Im X C = (40 A)(20 Ω) =  800 V I m 20 A

L 

200 Ω  200 Ω  
and we know that for i by 90o L =v Therefore   =a capacitor las   =  0.53 H . , ω  377 rad / s

v =  800sin(500t +  60o −  90o ) 
c . Since i leads v by 90o V 500 V , the element is a capacitor, and X =  m = = 500 Ωand v =  800sin(500t −  30o ) C I m 1 A 

Ex. 14-7 For the following pairs of voltage and currents, determine whether the 1 1 1 So that X C =  = 500Ω or C = =  =  12.74µF element involved is a capacitor, an inductor, or a resistor. Determine the value of C, ω  C ω 500 Ω  (157 rad / s)(500 Ω  )
L, or R if sufficient data are provided (Fig. 14-18):. 
a. v = 100 sin(ω t + 40° ) i = 20 sin(ω t + 40°  ) d . v = 50cos( ωt + 20 o ) = 50sin( ωt + 20 o + 90 o ) = 50sin( ωt + 110 o )
b.    v = 1000 sin(377 t + 10° ) i = 5sin(377 t – 80° ) Since v and i are in phase, the element is a resistor, andc.   v = 500 sin(157t + 30° ) i = 1sin(157 t + 120° ) 
d. v = 50 cos(ω t + 20° ) i = 5sin(ω t + 110° ) V 50 VR =  m = = 10 Ω

FIGURE 14.18 I m 5 A
ET 242 Circuit Analysis – Response of Basic Element  s Boylestad 17 ET 242 Circuit Analysis – Response of Basic Element  s Boylestad 18 

Inductor L : For the ideal inductor, the equation for the reactance can be written as 
Frequency Response  of the Basic Elements follows to isolate th  e frequency term in the equation. The result is a constant times the 

frequency variable that changes as we move down the horizontal axis of a plot: Thus far, each description has been for a set frequency, resulting in a fixed level of  
impedance foe each of the basic elements. We must now investigate how a change X ω π π πL = L = 2 f L = (2 L)f = k f with k = 2 L 
in frequency affects the impedance level of the basic elements. It is an important The resulting equation can be compared 
consideration because mo  st signals other than those provided by a power plant directly with the equation for a straight line: 
contain a variety of frequency levels. 

y = mx + b = k f + 0 = k f 

Ideal Response where b = 0 and slope is k  or 2πL. XL is the y 
variable, and f is the x variable, as shown in 

Resistor R : For an ideal resistor, frequency will have absolutely no effect on Fig. 14-20. Since the inductance determines 
the impedance level, as shown by the response in Fig. 14-19 the slope of the curve, the higher the 

inductance, the steeper the straight-line plot 
Note that 5 kHz or 20 kHz, the resistance of  as shown in Fig. 14-20 for two levels of 
the resistor remain at 22 Ω; there is no inductance. 
change whatsoever. For the rest of   the FIGURE 14.20 XL versus frequency. 

analyses in this text, the resistance level In particular, note that at f = 0 Hz, the reactance of each plot is zero ohms as determined 
remains as the nameplate value; no matter by substituting f = 0 Hz into the basic equation for the reactance of an inductor: 
what frequency is applied. 

XL = 2πf L = 2π(0 Hz)L = 0  Ω  FIGURE 14.19 R versus f for the range of interest. 
ET 242 Circuit Analysis – Response of Basic Element  s Boylestad 19 ET 242 Circuit Analysis – Response of Basic Element  s Boylestad 20
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Since a reactance of zero ohms corresponds with the characteristics of a short circuit, Capacitor C : For the capacitor, the equation for the reactance 
we can conclude that 1 X C =  
at a fr  equency of 0 Hz an inductor takes on the characteristics of a short circuit, 2 π  fC 
as shown in Fig. 14-21. can be written as

1 X C f =  = k (a constant)
2 π  C 

which matches the basic format for a hyberbola :
yx =  k

FIGURE 14.21 Effect of low and high frequencies on the circuit model of an inductor. 
where X C is the y variable, and k a constant

As shown in Fig. 14-21, as the frequency increases, the reactance increases, until it equal to 1 /( 2πC)
FIGURE 14.22 X ver

reaches an extremely high level at very high frequencies. C sus 
frequency. 

Hyperbolas have the shape appearing in Fig. 14-22 for two levels of capac  itance. at very high frequencies, the characteristics of an inductor approach those of an 
Note that the higher the capac  itance, the closer the curve approaches the vertical and open circuit, as shown in Fig. 14-21. 
horizontal axes at low and high frequencies. At 0 Hz, the reactance of any capacitor 

The inductor, therefore, is capable of  handling impedance levels that cover the is extremely high, as determined by the basic equation for capacitance: 
entire range, fro  m ohms to infinite ohms  , changing at a steady rate determined by 1 1 the inductance level. The higher the inductance, the faster it approaches the open- X C =  = ⇒∞ Ω
circuit equivalent. 2πfC 2π(0 Hz)C

ET 242 Circuit Analysis – Response of Basic Element  s Boylestad 21 ET 242 Circuit Analysis – Response of Basic Element  s Boylestad 22 

HW 14-18 The current through a 10 Ω  capacitive reactance is given. Write the 
The result is that sinusoidal expression for the voltages. Sketch the v and i sinusoidal waveforms on 

the same set of axes. at or near 0 Hz, the characteristics of a capacitor approach those of an open 
circuit, as shown in Fig. 14-23. a . i =  50 ×10 −  3 sin ωt  

b . i =  2 ×10 −  6 sin(ωt  + 60°)
c . i =  −6 sin(ωt  − 30°)
d . i =  3 cos(ωt  + 10°)

FIGURE 14.23 Effect of low and high frequencies on the circuit model of a capacitor. 

As the frequency increases, the reactance approaches a value of zero ohms. The 
result is that 
at very high frequencies, a capacitor takes on the characteristics of a short circuit, 
as shown in Fig. 14-  23. 
It is important to note in Fig. 14-22 that the reactance drops very rapidly as 
frequency increases. For capacitive elements, the change in reactance level can be 
dramatic with a relatively small change in frequency level. Finally, recognize the 
following: 
As frequency increases, the reactance of an inductive element increases while 
that of a capacitor decreases, with one approaching an open-circuit equivalent as Homework 14: 4-6, 
the other approaches a short-circuit equivalent. 10-11, 13, 15-18 

ET 242 Circuit Analysis – Response of Basic Element  s Boylestad 23 ET 242 Circuit Analysis – Response of Basic Element  s Boylestad 24 
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Average Po  wer and Power Factor 
OUTLINESOUTLINES A comm  on question is, How can a sinusoidal voltage or current deliver power to 

load if it seems to be delivering power during one part of its cycle and taking it 
back during the negative part of the sinusoidal cycle? The equal oscillations 

 above and below the axis seem to suggest that over one full cycle there is no net 
transfer of power or energy. However, there is a net transfer of power over one full 
cycle because power is delivered to the load at each instant of the applied voltage 
and current no matter what the direction is of the current or polarity of the voltage. 

To demonstrate this, consider the 
relatively simple configuration in Fig. 14-
29 where an 8 V peak sinusoidal voltage is 
applied across a 2 Ω  resistor. When the 
voltage is at its positive peak, the power 

• Average Power and Power 
Factor

• Complex Numbers

• Rectangular Form

• Polar Form

• Conversion Between Forms 
delivered at that instant is 32 W as shown 
in the figure. At the midpoint of 4 V, the 
instantaneous power delivered drops to 8 
W; when the voltage crosses the axis, it 

Key Words: Average Power,   Power Factor, Complex Number, Rectangular, Polar drops to 0 W. Note that when the voltage 
crosses the its negative peak, 32 W is still Figure 14.29 Demonstrating that power is delivered 
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In total, therefore, 

Even though the current through and the voltage across reverse direction and 
polarity, respectively, power is delivered to the resistive lead at each instant time. 

If we plot the power 
delivered over a full cycle, 
the curve in Fig. 14-30 
results. Note that the applied 
voltage and resulting current 
are in phase and have twice 
the frequency of the power 
curve. 
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)2)(2( 
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: 

The fact that the power 
curve is always above the 
horizontal axis reveals that 
power is being delivered to 
the load an each instant of 
time of the applied 
sinusoidal voltage. 

ET 242 Circuit Analysis II – Average power  & Pow Figure 14.30 Power versus time for a purely resistive load. 

In Fig. 14-31, a voltage with an initial phase angle is applied to a network with any 
combination of elements that results in a current with the indicated phase angle. 

The power delivered at each instant of time is then defined by 

P = vi = V sin(ω t + θ )·I sin(ω t + θi )m v m 
= VmIm sin(ω t + θv )·sin(ω t + θi ) 

Using the trigonometric identity 

2 
B)cos(AB)cos(A −sinBsinA +− 

=⋅ 

the function sin(ωt+θv)·sin(ωt+θi) becomes 
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Figure14.31 Determining the power 
delivered in a sinusoidal ac network. 

Fixed value Time-varying (function of t) 
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The average value of the second term is zero over one cycle, producing no net transfer 
of energy in any one direction. However, the first term in the preceding equation has a 
constant magnitude and therefore provides some net transfer of energy. This term is 
referred to as the average power or real power as introduced earlier. The angle (θv – 
θi) is the phase angle between v and i. Since cos(–α) = cosα, 

the magnitude of average power delivered is independent of whether v leads i or i 
leads v. 
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Resistor: In a purely resistive circuit, 
since v and i are in phase, θv – θi׀ ׀ = θ 
= 0°, and cosθ = cos0° = 1, so that 

Inductor: In a purely inductive circuit, 
since v leads i by 90 °, θv – θi׀ ׀ = θ = 
90°, therefore 

)( 

, 

)(
2 

2 
2 

WRI
R 

V
Pthen 

R 
VIOr 

WIVIVP 

rms 

rms 
rms 

rmsrms 
mm 

rms == 

= 

== 

since 

V I V I m m o m mP = cos 90 = (0) = 0 W 
2 2 

The average power or power dissipated 
by the ideal inductor (no associate resistor ) 
is zero watts. 

θ= ׀θ–θ׀ ,°i leads v by 90 In a purely capacitive circuit, since Capacitor: v i 
, therefore °90= ׀–°90׀ = 

( ) watts.zeroisresistorassociateno 
capacitoridealthebydissipatedpowerorpoweraverageThe 

WIVIVP mmomm 0)0(
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Ex. 14-10 Find the average power dissipated in a network whose input current and 
voltage are the following: 

i = 5 sin(ω t + 40° ) 
v = 10 sin(ω t + 40° ) 

Since v and i are in phase, the circuit appears to be purely 
resistive at the input terminals.Therefore, 

VmIm (10V )(5 A)P = = = 25 W 
2 2 

Vm 10V or R = = = 2 Ω
Im 5 A 

2 2Vrms [(0.707)(10V )]and P = = = 25W
R 2 

2 2or P = IrmsR = [(0.707)(5 A)] (2) = 25W 

ET 242 Circuit Analysis II – Average power  & Power Factor Boylestad 8 

Ex. 14-11 Determine the average power delivered to networks having the following 
input voltage and current: 

a. v = 100 sin(ω t + 40° ) i = 20 sin(ω t + 70° ) 
b. v = 150 sin(ω t – 70° )  i = 3sin(ω t – 50° ) 
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Power Factor 
In the equation P = (VmIm/2)cosθ, the factor  that has significant control over the 
delivered power level is the cosθ. No matter how large the voltage or current, if 
cosθ = 0, the power is zero; if cosθ = 1, the power delivered is a maximum. Since 
it has such control, the expression was given the name power factor and is defined 
by Power  factor = Fp = cosθ 

For a purely resistive load such as the one 
shown in Fig. 14-33, the phase angle 
between v and i is 0° and Fp = cosθ = cos0° 
= 1. The power delivered is a maximum of 
(VmIm/2)cosθ = ((100V)(5A)/2)(1) = 250W. 
For purely reactive load (inductive or 
capacitive) such as the one shown in Fig. 14-
34, the phase angle between v and i is 90° 
and Fp = cosθ = cos90° = 0. The power 
delivered is then the minimum value of zero 
watts, even though the current has the same 
peak value as that encounter in Fig. 14-33. 

Figure14.33
Purely resistive 
load with Fp = 1. 

Figure14.34
Purely inductive 
load with Fp = 1. 

For situations where the load is a combination of resistive and reactive elements, the 
power factor varies between 0 and 1. The more resistive the total impedance, the 
closer the power factor is to 1; the more reactive the total impedance, the closer 
power factor is to 0. 

rmsrms 
p IV 

PF 

currentandvoltageterminaltheandpoweraveragetheoftermsIn 

== θcos

, 

The terms leading and lagging are often written in conjunction with the power factor. 
They are defined by the current through the load. If the current leads the voltage 
across a load, the load has a leading power factor. If the current lags the voltage 
across the load, the load has a lagging power factor. In other words, 

capacitive networks have leading power factor, and inductive networks have 
lagging power factors. 
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Ex. 14-12 Determine the power factors of the following loads, and indicate whether 
they are leading or lagging: 

a. Fig. 14-35 b.   Fig. 14-36 c. Fig. 14-37 

Figure 14.36
Figure 14.35 

., 
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Figure 14.37 
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Complex Numbers 
In our analysis of dc network, we found it necessary to determine the algebraic 
sum of voltages and currents. Since the same will be also be true for ac networks, 
the question arises, How do we determine the algebraic sum of two or more 
voltages (or current) that are varying sinusoidally? Although one solution would 
be to find the algebraic sum on a point-to-point basis, this would be a long and 
tedious process in which accuracy would be directly related to the scale used. 

It is purpose to introduce a system of complex numbers that, when related to the 
sinusoidal ac waveforms that is quick, direct, and accurate. The technique is 
extended to permit the analysis of sinusoidal ac networks in a manner very similar 
to that applied to dc networks. 

A complex number represents a points in a two-
dimensional plane located with reference to two 
distinct axes. This point can also determine a radius 
vector drawn from the original to the point. The 
horizontal axis called the real axis, while the 
vertical axis called the imaginary axis. Both are 
labeled in Fig. 14-38. 

ET 242 Circuit Analysis II – Average power  & Power Factor Boylestad 
Figure 14.38 Defining the real and 
imaginary axes of a complex plane. 

In the complex plane, the horizontal or real axis represents all positive numbers to 
the right of the imaginary axis and all negative numbers to the left of imaginary 
axis. All positive imaginary numbers are represented above the real axis, and all 
negative imaginary numbers, below the real axis. The symbol j (or sometimes i) is 
used to denote the imaginary component. 

Two forms are used to represent a point in the plane or a radius vector drawn from 
the origin to that point. 

Rectangular Form 

The format for the rectangular form is 

C = X +jY 

As shown in Fig. 14-39. The letter C 
was chosen from the word “complex.” 
The boldface notation is for any number 
with magnitude and direction. The italic 
is for magnitude only. 

ET 242 Circuit Analysis II – Average power  & Power Factor 
Figure 14.39 Defining 
the rectangular form. ET 242 Circuit Analysis  II – Average pow 15 

Ex. 14-13 Sketch the following complex numbers in the complex plane. 
a. C = 3 + j4 b. C = 0 – j6 c. C = –10 –j20 

Figure 14.40 
Example 14-13 (a) 

Figure 14.41 
Example 14-13 (b) 

Figure 14.42 
Example 14-13 (c) 
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Polar Form 

.,, ZYXsequencethefrom 
chosenZletterthewith 

ZC 
is 

theforformatThe 

θ∠= 

formpolar 

Z indicates magnitude only and θ is always 
measured counterclockwise (CCW) from 
the positive real axis, as shown in Fig. 14-
43. Angles measured in the clockwise 
direction from the positive real axis must 
have a negative sign associated with them. 
A negative sign in front of the polar form 
has the effect shown in Fig. 14-44. Note that 
it results in a complex number directly 
opposite the complex number with a 
positive sign. 

Figure 14.43 
Defining the polar 
form. 

Figure 14.44 Demonstrating the effect of a negative sign on the polar form. ET 242 Circuit Analysis  II – A lestad 17 

Ex. 14-14 Sketch the following complex numbers in the complex plane: 
ooo cba 602.4.1207.305. ∠−=−∠=∠= CCC 

Figure 14.45 
Example 14-14 (a) 

Figure 14.46 
Example 14-14 (b) 

Figure 14.47 
Example 14-13 (c) 

Conversion Between Forms 
The two forms are related by the following equations, as illustrated in Fig. 14-48. 

X 
Y 

YXZ 

1 

22 

tan−= 

+= 

θ 

PolartorRectangula

ZsinθY 
ZcosθX 

= 

= 

rRectangulatoPolar 

Figure 14.48 Conversion between forms. 
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Ex. 14-15 Convert the following from rectangular to polar form: 
C = 3 + j4 (Fig. 14-49) 

o 

o 

Z 

13.535 

13.53
3 
4tan 

525)4()3(

1 

22 

∠= 

=⎟ 
⎠ 
⎞

⎜ 
⎝ 
⎛ = 

==+= 

− 

C 

θ 

Figure 14.49 

Ex. 14-16 Convert the following from polar to rectangular form: 
C = 10∠45° (Fig. 14-50) 

07.707.7
07.7)707.0)(10(45sin10
07.7)707.0)(10(45cos10 

jand 
Y 
X 

o 

o 

+= 

=== 

=== 

C 

Figure 14.50 
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HW 14-31 If the current through and voltage across an element are i = 8 sin(ωt +  
40º) and v = 48 sin(ωt + 40º), respectively, compute the power by I2R, (VmIm/2)cosθ, 
and VIcosθ, and compare answers. 

ET 242 Circuit Analysis  II – Average power  & Power Factor Bo 

Ex. 14-17 Convert the following from rectangular to polar form: 
C = –6 + j3 (Fig. 14-51) 

o 

ooo 

o 

Z 

43.1535 
43.15357.26180 

57.26
6 

3tan 

71.645)3()6( 

1 

22 

∠= 

=−= 

−=⎟ 
⎠ 
⎞

⎜ 
⎝ 
⎛ 
− 

= 

==+−= 

− 

C 
θ 

β 

Ex. 14-18 Convert the following from polar to rectangular form: 
C = 10 ∠ 230° (Fig. 14-52) 

66.743.6
66.7230sin10
43.6230cos10

jand 
Y 
X 

o 

o 

−−= 

−== 

−== 

C 

Figure 14.51 

Figure 14.52 

Vm 48V 2 ⎛ 8A ⎞
2 

R = = = 6 Ω, P = I R = ⎜ ⎟ 6Ω = 192 W
I 8 A 2 ⎠m ⎝ 
Vm I m (48V )(8A)P = cosθ = cos0° = 192 W 

2 2 
⎛ 48 V ⎞⎛ 8 A ⎞P = VI cosθ = ⎜ ⎟⎜ ⎟ cos0° = 192 W 
⎝ 2 ⎠⎝ 2 ⎠ 

Homework 14: 28, 31, 34-36 
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Mathematical Operations 
with Complex NumbersOUTLINESOUTLINES 

Complex numbers lend themselves readily to the basic mathematical operations 
of addition, subtraction, multiplication, and division. A few basic rules and 
definitions must be understood before considering these operations.

Mathematical Operations with 
Let us first examine the symbol j associated with imaginary numbers,Complex Numbers 

By definition, 

j = -1 Thus, j 2 = −1Psasors – Polar and Rectangular Formats 
and j3 = j 2 j = −1⋅ j = − j 

4 2 2with j = j ⋅ j = (−1)(−1) = +1Conversion Between Forms 
j5 = j 

and so on. Further, 

1 ⎛ 1 ⎞ ⎛ j ⎞⎛ 1 ⎞ ⎛ j ⎞ j
= (1) ⎟⎟⎜⎜ = ⎟⎟⎜⎜⎟⎟⎜⎜ = ⎜⎜

⎝ j 2 ⎟⎟ = = − j
Key Words: Complex Number, Phasor, Time Domain, Phase Domain j ⎝ j ⎠ ⎝ j ⎠⎝ j ⎠ ⎠ −1 
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Complex Conjugate: The conjugate or complex conjugate of a complex Reciprocal: The reciprocal of a complex numb  er is 1 devided by the complex 
number can be found by simply changing the sign of imaginary part in r  ectangular number. For example, the reciprocal of 
form or by using the negative of the angle of the polar form  . For exam  ple, the 1 

=  +f X  conjugate o C  jY is 
X +  jY 

C = 2 + j3 is   2 – j3 and of Z∠θ , 
as shown in Fig. 14 −  53. The conjugate of 1 

C =  2∠30 o is 2∠ − 30 o Z∠θ  

as shown in Fig. 14 −  54 We are now prepared to consider the four basic operations of addition, subtraction, 
multiplication, and  division with complex numbers. Figure 14.53 

Defining the complex Addition: To   add two or more complex numbers, add the real and imaginar  y conjugate of a complex 
number in rectangular parts separately. For example, if 
form. 

C1 = ±X ±1 jY1 and C X ±2 = ± 2 jY2 

then C + C ± ± ± ±
Figure 14.54 1 2 = ( X1 X2) + j( Y1 Y2) 
Defining the complex There is really no need to memorize the equation. Simply set one  above the other 
conjugate of a complex and consider the real and imaginary parts separately, as shown in Example 14-19. 

ET 242 Circuit Analysis II– Average power  & Power F actor number in polar form. Boylestad 2 ET 242 Circuit Analysi  s II – Phasors Boylestad 5 

Ex. 14-19 Subtraction: In subtraction, the real and imaginary parts are again considered 
a. Add C1 = 2 + j4 and C = 3 + j1 separately. For example, if 

2 
b. Add C1 = 3 + j6 and C2 = –6 – j3 C = ±X ± jY and C = ±X ±1 1 1 2 2 jY2 

a. C1 + C2 = (2 + 3) + j(4 + 1) = 5 + j5 then C1 – C ±2 = [(±X ±1 – ( X2)] + j[( Y – ±1 Y2)] 

b.  C + C = (3 – 6) + j(6 + 3) = –3 + j9 Again, there is no need to memorize the equation if the alternative method of 
1 2 Example 14-20 is used. 

Ex. 14-20 
a. Subtract   C2 = 1 + j4 from C1 = 4 + j6 
b. Subtract   C2 = –2 + j5 from C1 = +3 + j3 

a. C1 – C2 = (4 – 1  )  + j(6 – 4  )  

= 3 + j2 

b. C1 – C2 = (3 – (–2)) + j(3 – 5  ) Figure 14.58 
= 5 – j2 Example 14-20 (b) 

Figure 14.55 Example 14-19 (a) Figure 14.56 Example 14-19 (b) Figure 14.57 Example 14-20 (a) 
ET 242 Circuit Analysi  s II – Phasors Boylestad 6 ET 242 Circuit Analysi  s II – Phasors Boylestad 7 
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Addition or subtraction cannot be performed in polar form unless Multiplication: To multiply two complex numbers in rectangular form, the complex numbers have the same angle θ or unless they differ multiply the real and imaginary parts of one in turn by the real and imaginary parts 
only by multiples of 180°. of the other. For example, if 

Ex. 14 −  21 C1 = X1 + jY1 and C2 = X2 + jY2 

a. 2∠  45 o + 3∠ 45 o = 5∠ 45 o. Note Fig. 14 − 59. then C1 · C2 : X1 + jY1 

b. 2∠  0 o − 4∠180 o = 6∠ 0 o. Note Fig. 14 − 60. X2 + jY2 

X1X2 + jY1X2 

+ jX 2 + j2
1Y Y1Y2 

X1X2 + j(Y1X2 + X1Y2) + Y1Y2(–1) 

and C1 · C2 = (X1X2 – Y1Y2) + j(Y1X2 + X1Y2) 

In Example 14-22(b), we obtain a solution without resorting to memorizing 
equation above. Simply carry along the j factor when multiplying each part of one 

Figure 14.60 Example 14-21 (b) vector with the real and imaginary parts of the other. 
Figure 14.59 Example 14-21 (a) 

ET 242 Circuit Analysi  s II – Phasors Boylestad 8 ET 242 Circuit Analysi  s II – Phasors Boylestad 9 

Ex. 14-22 Ex. 14 −  23
a. Find C1 · C2 if C1 = 2 + j3 and C2 = 5 + j10 a. Find C ⋅  C if C = 5∠20o and C = 10∠30o 
b. Find C1 · C2 if C1 = –2 – j3 and C 1 2 1 2 

2 = +4 – j6 
b. Find C1 ⋅  C2 if C1 = 2∠− 40o C ∠+ 120o 

2 =a. Using the format above, we have and 7

C1 · C2 = [(2) (3) – (3) (10)] + j[(3) (5) + (2) (10)] a. C 1 ⋅  C 2 = (5∠ 20 o )(10 ∠30 o )

= – 20 + j35 =  (5)(10) ∠ (20 o + 30 o )

b. Without using the format, we obtain   =  50 ∠50 o 

–2 – j3 b. C 1 ⋅  C = (2 o 120 o

6 2 ∠ − 40 )(7 ∠ + )
+4 – j
–8 – j12   =  (2)(7) ∠ (−40 o + 120 o )

+ j12 + j218   =  14 ∠ + 80 o 

–8 + j(–12 + 12) – 18 
C  a co–26 = ° To multiply mplex nu angular form by a  real nuand 1 · C mber in rect mber 

180ے 26  = 2
requires that both the real part and the imaginary part be multiplied by the real 

In  polar form, the magnitudes are multiplied and the angles added algebraically. For number. For example, 
example, for C 1 =  Z 1∠ θ 1 and C 2 = Z 2∠ θ 2 (10)(2+  j 3) = 20+ j30

we write o o

⋅  = ∠ + and 50 ∠  0 (0+ j 6) = j300 = 300∠90C 1 C 2 Z 1Z 2 (θ 1 θ 2 )
EETT 24 242 Ci2 Circrcuituit A Annalalysyisi s s IIII–  – PAhasveragors e power  & Power Factor BoBoyylestalestad d 210 ET 242 Circuit Analysi  s II – Phasors Boylestad 11 
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Ex. 14-24 
Division: a. Find C / C if C = 1 + j4 and C = 4 + j5 To divide two complex numbers in rectangular form, multiply the 1 2 1 2 

b. Find C / C if C = –4 – j8 and C = +6 – j1 numerator and denominator by the conjugate of the denominator and the resulting 1 2 1 2 

real and imaginary parts collected. That is, if a . By preceding equation, b . Using an alternative method, we obtain
C 1 =  X 1 +  jY 1 and C 2 =  X 2 +  jY2 C 1 (1)(4) +  (4)(5) (4)(4) −  4 − j8

=  +  2 2 j
then C (X jY 2

1 1 +  1 )(X 2 −  jY 2 ) C 2 4 +  5 4 +  52 +  6 + j1
=  

C −  24 − j48
2 ( X 2 +  jY 2 )(X 2 −  jY 2 ) 24 11

=  + j ≅ 0.59 +  j0.27
(X X +  Y Y ) +  j (X Y −  X Y ) 41 41 −  j4 − j2 8

=  1 2 1 2 2 1 1 2

X 2 +  Y 2 −  24 − j52+8 = −16− j52
2 2 

C1 X 1X 2 +  1Y Y X Y + 6 − j1−  X Y  
and =  2  2 + j 2 1 1 2

C X +  Y 2 X 2 Y 2 + 6 j1
2 2 2 2 +

 +  2 
36 +  j6

The equation does not have to be memorized if the steps above used to −  j6 − j2 1
obtain it are employed. That is, first multiply the numerator by the complex 36 +  0+1= 37conjugate of the denominator and separate the real and imaginary terms. Then 
divide each term by the sum of each term of the denominator square. C −  16 52and 1 =  − j = −0.43 − j1.41

C 2 37 37 
ET 242 Circuit Analysi  s II – Phasors Boylestad 12 ET 242 Circuit Analysi  s II – Phasors Boylestad 13 

To divide a complex number in rectangular form by a real number, both 
the real part and the imaginary par  t must be divided by the real number. Fo  r Phasors 
example,  8 +  j 10

=  4 + j5 The addition of sinusoidal voltages and current is frequently required in the 2 
6.8−  analysis of ac circuits. One lengthy but valid method of performing this operation j 0

=  3.4− j0 = 3.4∠0o
is to place both sinusoidal waveforms on the same set of axis and add a and 2 
algebraically the magnitudes of each at every point along the abscissa, as shown  for 

In polar form, division is accomplished by dividing the magnitude of the c = a + b in Fig. 14-71. This, however, can be a long and tedious process with 
numerator by the magnitude of the denominator and subtracting the angle of the limited accuracy. 
denominator fro  m that of the numerator. That is, for C 1 = Z1∠θ  1 and C2 = Z2∠θ2

we write C 1 Z 
=  1 ∠( θ θ

C Z 1  − 2 )
2 2 

Ex. 14 −  25
a. Find C1 / C 2 if C1 =  15∠10 o and C o 

2 = 2∠7

b. Find C C o 
1 / C 2 if 1 =  8∠120 and C 2 = 16∠ − 50 o 

C 15 o 
1 ∠  10 15 a . =    o = ∠(10 o − 7 o ) = 7.5∠3o

C 2 2 ∠  7 2 
C o 

b . 1 8 ∠  120 8 Figure 14.71 Adding two sinusoidal waveforms on a point-by-point 
=   o = ∠(120 o − (−50 o )) = 0.5∠170 o

ET 242 Circuit Analysis II – AC ve2 rage pow16 e50 basis. 
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A shor  ter method uses the rotating radius vector. This radius vector, having a 
It can be shown [see Fig. 14-72(a)] using the vector algebra described that constant magnitude (length) with one end fixed at the origin, is called a phasor 

when applied to electric circuits. During its rotational development of the sine 1V∠0 o =  2V∠90 o =  2.236V∠63.43 o
wave, the phasor will, at the instant = 0, have the positions shown in Fig. 14-72(a) 

In other words, if we convert v and v  for each waveform 1 2 to the phasor form using  in Fig. 14-72(b). 
Note in Fig. 14-72(b) that v2 v =  Vm sin(ωt ±θ ) ⇒  Vm∠  ±θ  
passes through the horizontal 
axis at t = 0 s, requiring that the And add then using complex number algebra, we can find the phasor form for vT 

radius vector in Fig.  14-72(a) is with very little difficulty. It can then be converted to the time-domain and plotted on 
equal to the peak value of the the same set of axes, as shown in Fig. 14-72(b). Fig. 14-72(a),   showing the 
sinusoid as required by the magnitudes and relative positions of the various phasors, is called a phasor 
radius vector. The other diagram. 
sinusoid has passed through 
90°  of its rotation by the time t In the future, therefore, if the addition of two sinusoids is required, you should first 
= 0 s is reached and therefore convert them to phasor domain and find the sum using complex algebra. You can 
has its maximum vertical  then convert the result to the time domain. 
projection as shown in Fig. 14-
72(a). Since the vertical The case of two sinusoidal functions having phase angles different from 0°  and 90°  
projection is a maximum, the appears in Fig. 14-73. Note again that the vertical height of the functions in Fig. 
peak value of the sinusoid that 14-73(b) at t = 0 s is determined by the rotational positions of the radius vectors in 
it generates is also attained at t Fig. 14-73(a). = 0 s as shown i  n Fig. 14-

Figure 14.72 Demonstrating the effect of a negative sign on the polar form. 72(b).
ET 242 Circuit Analysi  s II – Phasors Boylestad 16 ET 242 Circuit Analysi  s II – Phasors Boylestad 17 

In general, for all of the analysis to follow, the phasor form of a sinusoidal voltage Ex. 14-27 Convert the following f  rom the tim  e to the phasor domain: 
or current will be 

V =  V ∠θ  and I = I∠θ
Time Domain Phasor Domain 

where V and I are rms value and θ is the phase angle. It should be pointed out that 
in phasor notation, the sine wave is always the reference, and the frequency is not 
represented. a. √2(50)sinωt 50∟0° 

Phasor algebra for 
sinusoidal quantities b.  69.9sin(ω  t + (0.707)(69.6)∟72° = 49.21∟  is applicable only for Ex. 14-28 Write the sinusoidal expression for the following phasors if   the 
waveforms having freque72ncy°) is 60 Hz: 90°
the same frequency. 

Time Domain Phasor Domain 
c.  45sinωt (0.707)(45)∟90° =  31.82∟90°

a. I = 10∟30° i = √2 (10)sin(2π60t + 30°) 
and   i = 14.1  4 sin(377t + 30°) 

b. V = 115∟–70° v = √2 (115)sin(377t – 30°) 
and   v = 162.6 sin(377t – 30°) 

Figure 14.73 Adding two sinusoidal currents with phase angles other than 90°. 
ET 242 Circuit Analysi  s II – Phasors Boylestad 18 ET 242 Circuit Analysi  s II – Phasors Boylestad 19 
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Ex. 14-29 Find the input voltage of the circuit in Fig. 14-75 if  
va = 50 sin(377t + 30°) 
vb = 30 sin(377t + 60°) 

Figure 14.75 

f = 60 Hz 

VjVVV 
VjVVV 

yieldsadditionforformrrectangulatopolarfromConverting 
VVtv 

VVtv 
yieldsdomainphasorthetotimethefromConverting 

vve 
havewelawvoltagesKirchhoffApplying 

b 

a 

b 
o 

b 

a 
o 

a 

bam 

37.1861.103021.21
68.1761.303035.35

6021.21)60377sin(50

3035.35)30377sin(50

,' 

+=°∠= 

+=°∠= 

°∠=⇒+= 

°∠=⇒+= 

+= 
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Figure 14.76 
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)41.1777t77.43sin(3eand 
)41.17(377t(54.76)sin2e41.17V54.76E 

obtainwedomain,timethetophasorthefromConverting 
41.17V54.76Vj36.05V41.22E 

haveweform,polartorrectangulafromConverting 
Vj36.05V41.22

j18.37)V(10.61j17.68)V(30.61VVE 
Then 

m 

mm 

m 

bam 

°+= 

°+=⇒°∠= 

°∠=+= 

+= 

+++=+= 

A plot of the three waveforms is 
shown in Fig. 14-76. Note that at 
each instant of time, the sum of the 
two waveform does in fact add up to 
em. At t = 0 (ωt = 0), em is the sum 
of the two positive values, while at a 
value of ωt, almost midway 
between π/2 and π, the sum of the 
positive value of va and the negative 
value of vb results in em = 0. 

Ex. 14-30 Determine the current i2 for the network in Fig. 14-77. 

22 

)89.100sin(108.105

)89.100sin()1082.74(289.10082.74

, 
89.10082.74

, 
47.7314.14

)056.56()47.7342.42(

3 
2 

3 
22 

2 

12 

°+×= 

°+×=⇒°∠= 

°∠= 

+−= 

+−+=−= 

− 

− 

tiand 

timAI 

havewedomaintimethetophasorthefromConverting 
mAI 

haveweformpolartorrectangulafromConverting 
mAjmA 

jmAmAjmAIIIThen T 

ω 

ω 

Figure 14.78 
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056.56056.56

47.7342.426084.84

056.56sin1080 

6084.84)60sin(10120 

,' 

1 

3 
1 

3 

1221 

jmAmAI 
VjmAmAI 

yieldsgsubtractinforformrrectangulatopolarfromConverting 
mAti 

mAti 
yieldsdomainphasorthetotimethefromConverting 

iiioriii 
havewelawcurrentsKirchhoffApplying 

T 

o 
T 

TT 

+=°∠= 

+=°∠= 

°∠⇒×= 

°∠⇒+×= 

−=+= 

− 

− 

ω 

ω 

Figure 14.77 

A plot of the three waveforms appears 
in Fig. 14-78. The waveforms clearly 
indicate that iT = i1 + i2. 
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HW 14-50 For the system in Fig. 14.87, find the sinusoidal expression for the 
unknown voltage va if 

)20377sin(20
)20377sin(60
°−= 

°+= 

tv 
te 

b 

m 

Figure 14.87 Problem 50. 
(Using peak values) 

e = v + v ⇒ v = e − vin a b a in b 

= ( 60 V∠20 ° ) − 20 V∠ − 20 ° ) 
= 48.49 V∠36.05° 

and em = 46 .49 sin(377t + 36.05 ° ) 

ET 242 Circuit Analysis II – Phasors Boylestad 24 

HW 14-51 For the system in Fig. 14.88, find the sinusoidal expression for the 
unknown voltage i1 if 

)30sin(106 

)60sin(1020 
6 

2 

6 

°−×= 

°+×= 
− 

− 

ti 

tis 

ω 

ω 

)76.70sin( ωi1020.88i 
76.70A1020.88 

)30A10(6)60A10(20values)peak(Using 

iiiiii 

6 
1 

6 

66 
2s1212 

°+×= 

°∠×= 

°−∠×−°∠×= 

−=⇒+= 

− 

− 

−− 

Figure 14.88 Problem 51. 

Homework 14: 39, 40, 43-45, 48, 50, 51 
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OUTLINESOUTLINES 

Introduction to Series ac Circuits Analysis 

Impedance and Phase Diagram 

Series Configuration 

Voltage Divider Rule 

Frequency Response for Series ac Circuits 

Series & Parallel ac Circuits 
Phasor algebra is used to develop a quick, direct method for solving both 
series and parallel ac circuits. The close relationship that exists between this 
method for solving for unknown quantities and the approach used for dc 
circuits will become apparent after a few simple examples are considered. 
Once this association is established, many of the rules (current divider rule, 
voltage divider rule, and so on) for dc circuits can be applied to ac circuits. 
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Series ac Circuits 
Impedance & the Phasor Diagram – Resistive Elements 

From previous lesson we found, for the purely resistive circuit in Fig. 15-1, that v 
and i were in phase, and the magnitude 

Figure 15.1 
Resistive ac 
circuit 

RIVor
R 

VI mm 
m 

m == 
Key Words: Impedance, Phase, Series Configuration, Voltage Divider Rule 
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Ex. 15-1 Using complex algebra, find the current i for the circuit in Fig. 15-2. 
Sketch the waveforms of v and i. 

FIGURE 15.3 FIGURE 15.2 
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Ex. 15-2 Using complex algebra, find the voltage v for the circuit in Fig. 15- 4. 
Sketch the waveforms of v and i. 
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FIGURE 15.5 
FIGURE 15.4 

Series ac Circuits 
Impedance & the Phasor Diagram – Inductive Elements 
From previous lesson we found that the purely inductive circuit in Fig. 15-7, voltage 
leads the current by 90° and that the reactance of the coil XL is determined by ωL. 

°∠=⇒= 0VformPhasortsinVv m Vω 

)0(0 ,' L 
LLL X 
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X 
VIlawsohmBy θ
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= 

Figure 15.7 Inductive ac circuit. 

Since v leads i by 90°, i must have an angle of – 
90° associated with it. To satisfy this condition, 
θL must equal + 90°. Substituting θL = 90°, we 
obtain 

ylestad 3– 

We use the fact that θL = 90° in the 
following polar format for 
inductive reactance to ensure the 
proper phase relationship between 
the voltage and current of an 
inductor: 
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Ex. 15-3 Using complex algebra, find the current i for the circuit in Fig. 15- 8. 
Sketch the v and i curves. 
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Figure 15.8 Example 15.3. Figure 15.9 Waveform for Example 15.3.
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Ex. 15-4 Using complex algebra, find the voltage v for the circuit in Fig. 15- 10. 
Sketch the v and i curves. 
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Figure 15.11 Waveforms for Example 15.4. 
Figure 15.10 Example 15.4. 

For the pure capacitor in Fig. 15.13, the current leads the voltage by 90º and that the 
reactance of the capacitor XC is determined by 1/ωC. 
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Capacitive Resistance 

Figure 15.13 Capacitive ac circuit. 

Since i leads v by 90º, i must have an angle of +90º 
associated with it. To satisfy this condition, θC must 
equal –90º. Substituting θC = – 90º yields 
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We use the fact that θC = –90º 
in the following polar format 
for capacitive reactance to 
ensure the proper phase 
relationship between the 
voltage and current of a 
capacitor: 

°−∠= 90CC XZ 
ET162 Circuit Analysis – Ohm’s Law Boylestad 11 

Ex. 15-5 Using complex algebra, find the current i for the circuit in Fig. 15.14. Sketch 
the v and i curves. 
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Figure 15.14 Example 15.5. 
Figure 15.15 Waveforms for Example 15.5. 
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Ex. 15-6 Using complex algebra, find the current v for the circuit in Fig. 15.16. Sketch 
the v and i curves. 

Figure 15.16 Example 15.6. 
Figure 15.17 Waveforms for Example 15.6. 
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The overall properties of series ac circuits 
(Fig. 15.20) are the same as those for dc 
circuits. For instance, the total impedance 
of a system is the sum of the individual 
impedances: 

Series Configuration 

NT ZZZZZ ++++= LL321 
Figure 15.20 Series impedance. 

Ex. 15-7 Draw the impedance diagram for the circuit in Fig. 15.21, and find the total 
impedance. 

As indicated by Fig. 15.22, the input 
impedance can be found graphically from 
the impedance diagram by properly 
scaling the real and imaginary axes and 
finding the length of the resultant vector 
ZT and angle θT. Or, by using vector 
algebra, we obtain Figure 15.21 Example 15.7. 

Figure 15.22 Impedance 
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Ex. 15-8 Determine the input impedance to the series network in Fig. 15.23. Draw the 
impedance diagram. 
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Figure 15.23 Example 15.8. 

The impedance diagram appears in Fig. 15.24. 
Note that in this example, series inductive and 
capacitive reactances are in direct opposition. For 
the circuit in Fig. 15.23, if the inductive reactance 
were equal to the capacitive reactance, the input 
impedance would be purely resistive. 

Figure 15.24 Impedance diagram for Example 15.8. 
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For the representative series ac configuration in Fig. 15.25 having two impedances, 
the currents is the same through each element (as it was for the series dc circuits) 
and is determined by Ohm’s law: 

TZ 
EI =+= andZZZ T 21 

The voltage across each element can be found 
by another application of Ohm’s law: 

2211 ZIVandZIV == Figure 15.25 Series ac circuit. 

KVL can then be applied in the same manner as it is employed for dc circuits. 
However, keep in mind that we are now dealing with the algebraic manipulation of 
quantities that have both magnitude and direction. 

The power to the circuit can be determined by 

where θT is the phase angle between E and I. 

TEIP θcos= 

2121 0 VVEorVVE +==++− 



 

    

 

  

 

 

 
 

 
 

 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 

 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
  

 
 

 
  

Ex. 15-9 Using the voltage divider rule, find the voltage across each element of the 
circuit in Fig. 15.40. 
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Voltage Divider Rule 
The basic format for the voltage divider rule in ac circuits is exactly the same as that 
for dc circuits: 

where Vx is the voltage across one or more elements in a series that have total impedance Zx, E is the total 
voltage appearing across the series circuit, and ZT is the total impedance of the series circuit. 

T 

x 
x Z 

EZ
V = 

Figure 15.40 Example 15.9. 
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Ex. 15-10 Using the voltage divider rule, find the unknown voltages VR, VL,, VC, and 
V1for the circuit in Fig. 15.41. 
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Figure 15.41 Example 15.10. 
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Frequency Response for Series ac Circuits 
Thus far, the analysis has been for a fixed frequency, resulting in a fixed value for the 
reactance of an inductor or a capacitor. We now examine how the response of a series 
changes as the frequency changes. We assume ideal elements throughout the discussion 
so that the response of each element will be shown in Fig. 15.46. 

Figure 15.46 
Reviewing the 
frequency response of 
the basic elements. 

When considering elements in series, remember that the total impedance is the sum of 
the individual elements and that the reactance of an inductor is in direct opposition to 
that capacitor. For Fig. 15.46, we are first aware that the resistance will remain fixed for 
the full range of frequencies: It will always be there, but, more importantly, its 
magnitude will not change. The inductor, however, will provide increasing levels of 
importance as the frequency increases, while the capacitor will provide lower levels of 
impedance. 
In general, if we encounter a series R-L-C circuit at very low frequencies, we can 
assume that the capacitor, with its very large impedance, will be dominant factor. If 
the circuit is just an R-L series circuit, the impedance may be determined primarily by 
the resistive element since the reactance of the inductor is so small. As the frequency 
increases, the reactance of the coil increases to the point where it totally outshadows the 
impedance of the resistor. For an R-L-C combination, as the frequency increases, the 
reactance of the capacitor begins to approach a short-circuit equivalence, and total 
impedance will be determined primarily by the inductive element. 
In total, therefore, 

when encountering a series circuit of any combination of elements, always use the 
idealized response of each element to establish some feeling for how the circuit will 
response as the frequency changes. 

5 
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Figure 15.57 Plotting VL versus for the series R-L circuit in Fig. 15.56. 

As an example of establishing the 
frequency response of a circuit, consider 
the series R-C circuit in Fig. 15.47. As 
noted next to the source, the frequency 
range of interest is from 0 to 20 kHz. 

Boylestad 20 

Series R-C ac Circuits 

The frequency at which the reactance 
of the capacitor drops to that of the 
resistor can be determined by setting 
the reactance of the capacitor equal to 
that of the resistor as follows: 

Solving for the frequency yields 

R
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12 
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f 

π2
1 

1 = 

Now for the details. The total impedance is 
determined by the following equation: 

The magnitude and angle of the total impedance 
can now be found at any frequency of interest 
by simply substituting into Eq. (15.12). 
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Figure 15.47 Determining the frequency response of a series R-C circuit. 

We now that for frequencies 
greater than f1, R > XC and 
that for frequencies less than 
f1, XC > R, as shown in Fig. 
15.48. 

– y 

Figure 15.48 The frequency response 
for the individual elements of a series of 
a series R-C circuit. 
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Ex. 15-12 For the series R-L circuit in Fig. 15.56: 
a. Determine the frequency at which XL = R. 
b. Develop a mental image of the change in total impedance with frequency 
without doing any calculations. 
c. Find the total impedance at f = 100 Hz and 40 kHz, and compare your answer 
with the assumptions of part (b) 
d. Plot the curve of VL versus frequency. 
e. Find the phase angle of the total impedance at f = 40 kHz. Can the circuit be 
considered inductive at this frequency? Why? 
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Rf 

andRLfXa L 

7.7957
)40(2 
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Ω 
== 

= = 

ππ 

π 

b. At low frequencies, R > XL and the impedance will be very close to that of the 
resistor, or 2 kΩ. As the frequency increases, XL increases to a point where it is the 
predominant factor. The result is that the curve starts almost horizontal at 2 kΩ and then 
increases linearly to very high levels. 

Figure 15.56 Example 15.12. 

X2 2 −1 Lc. Z = R + jX = Z ∠θ = R + X ∠ tanT L T T L R 
At f = 100 Hz : 

X L = 2πfL = 2π (100 Hz )(40mH ) = 25.13 Ω 

2 2 2 2and ZT = R + X L = (2kΩ) + (25.13Ω) = 2000 .16 Ω ≅ R 
At f = 40 kHz : 

X L = 2πfL = 2π (40kHz )(40mH ) = 10.25 kΩ ≅ X L 

2 2 2 2and Z = R + X = (2kΩ) + (10.05kΩ) = 10.25 kΩ ≅ XT L L 

Both calculatio ns support the conclusion s of part (b). 
d. Applying the voltage divider rule: 

T 

L 
L Z 

EZV = 

From part (c), we know that at 100 Hz, 
ZT ≈ R so that VR ≈ XL so that VL ≈ 20V 
and VR ≈ 0V. The result is two plot 
points for the curve in Fig. 15.57. 
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The angle θT is closing in on the 90º of a purely inductive network. Therefore, the 
network can be considered quite inductive at a frequency of 40 kHz. 
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HW 15-15 Calculate the voltage V1 and V2 for the circuits in Fig. 15.134 in Phasor 
form using the voltage divider rule. 

Figure 15.134 Problem 15. 

Homework 15: 
2-7, 9-12, 15, 16 
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Parallel ac Networks 
For the representative parallel ac 
network in Fig. 15.67, the total 
impedance or admittance is determined 
as previously described, and the source 
current is determined by Ohm’s law as 
follows: 

T 
T 

EY
Z 

EI == 
Figure 15.67 Parallel ac network. 

Since the voltage is the same across 
parallel elements, the current through 
each branch can be found through 
another application of Ohm’s law: 

2 
2 

21 
1 

1 EY
Z 

EIandEY
Z 

EI ==== 

KCL can then be applied in the same manner as used for dc networks with 
consideration of the quantities that have both magnitude and direction. 

I – I1 – I2 = 0 or I = I1 + I2 

The power to the network can be determined byP = EIcosθT 
where θT is the phase angle between E and I. 

Key Words: Parallel ac Circuit, Impedance, Phase, Frequency Response 
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Parallel ac Networks : R-L 

°∠Ω= 
°−∠ 
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°−∠ 
Ω 
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Figure 15.68 Parallel R-L network. 
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T 
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θθ 

θθ 

Figure 15.70 Admittance diagram 
for the parallel R-L network in Fig. 15.68. 

Figure 15.69 Applying 
phasor notation to the 
network in Fig. 15.68. 

Phasor Notation: 
As shown in Fig. 15.69. 

KCL : At node a, 
I − I − I = 0 or I = I + IR L R L 

10A∠0° = 6A∠53.13° + 8A∠ − 36.87° 
10A∠0° = (3.60A + j4.8A) + (6.40A − j4.80A) 

= 10A + j0 

and 10A∠0° = 10A∠0° (checks) 

Phasor diagram: The 
phasor diagram in Fig. 
15.71 indicates that the 
applied voltage E is in phase 
with the current IR and leads 
the current IL by 90o. 

W120 

)(200W)(0.6cos53.13(20V)(10A)
EIcosθP 

iscircuitthetodeliveredwattsinpowertotalThePower 

TT 

= 

=°= 

= 

: 

lagging0.6cos53.13cosF 

iscircuittheoffactorpowerThefactorPower 

Tp =°== θ 

: 

Figure 15.71 Phasor diagram for the parallel R-L network in Fig. 15.68. 
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W60S)(100W)(0.6cos53.13(10V)(10A)EIcosθPPower TT ==°==: 
CRCR IIIor0III 

anodeAtKCL 

+==−− 

,: 
leading0.6cos53.13cosF 

iscircuittheoffactorpowerThefactorPower 

Tp =°== θ 

: 

Parallel ac Networks : R-L-C 

Phasor Notation: 
As shown in Fig. 15.78. 

°∠= 
°−∠ 

== 

°−∠=−= 

+−= 

°∠+°−∠+°∠= 

°∠+°−∠+°∠= 

°∠+°−∠+°∠=++= 

53.132Ω 
53.130.5S 

1 

Y 

1Z 

53.13S0j0.4S0.3S 

j0.3Sj0.7S0.3S 

900.3S900.7S00.3S 

90 
3.33Ω 

190 
1.43Ω 

10 
3.33Ω 

1 

90B90B0GYYYY 

T 
T 

CLCLRT 

5.

Figure 15.77 Parallel R-L-C network. 

Figure 15.78 Applying phasor 
notation to the network in Fig. 15.77. 

Parallel ac Networks : R-C 

Phasor Notation: 
As shown in Fig. 15.73. 

Figure 15.72 Parallel R-C network. 
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°∠+°∠=+= 
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1Z 

53.131.0Sj0.8S0.6S 
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1 

90B0GYYY 
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T 

CCRT 
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°∠∠= 
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°∠ 
=== 
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010A 
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1IZE 

FiginshownAsdiagramAdmittance 

CC 

R 

T 
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.74.15.: 

Figure 15.73 Applying phasor 
notation to the network in Fig. 15.72. 

Figure 15.74 
Admittance diagram 
for the parallel R-C 
network in Fig. 15.72. 
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°∠=°+∠°∠= 

°∠∠= 

°−∠=°−∠°∠= 

°−∠∠= 

°∠=°∠°∠= 

°∠∠= 

°∠=−∠°∠=== 

143.1330A)90)(0.3S53.13(100V 

)90θ)(B(EI 
36.8770A)90)(0.7S53.13(100V 

)90θ)(B(EI 
53.1330A)0)(0.3S53.13(100V 

)0θ)(G(EI 

050A53.13))(0.5S53.13(100VEY
Z 

EI 

15.79FiginshownAsdiagramAdmittance 

CC 

LL 

R 

T 
T 

..: 

CLRCLR IIIIor0IIII 
anodeAtKCL 

++==−−− 

,: 

W30006S)(5000W)(0.)cos53.13(100V)(50AEIcosθP 

Power 

TT ==°== 

: 

lagging0.6cos53.13cosF 

iscircuittheoffactorpowerThefactorPower 

Tp =°== θ 

: 

Figure 15.79 Admittance diagram 
for the parallel R-L-C network in Fig. 15.77. 
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Ex. 15-16 Using the current divider rule, find the current through each parallel 
branch in Fig. 15.83. 

Current Divider Rule 

21 

1 
2 

21 

2 
1 ZZ 

IZIor
ZZ 

IZI TT 

+ 
= 

+ 
= 

The basic format for the current divider rule in ac circuit exactly the same as 
that dc circuits; for two parallel branches with impedance in Fig. 15.82. 

Figure 15.82 Applying the current divider rule. 

°−∠= 
°∠ 

°∠ 
= 

°∠ 

°∠°∠ 
= 

+ 
= 

°∠= 
°∠ 

°∠ 
= 

°∠+°∠ 

°∠°∠ 
= 

+ 
= 

53.1312A
53.135 

060A 

53.135 

)0)(20A0(3 Ω 

ZZ 

IZI 

36.8716A
53.135 

9080A 

904Ω03Ω 

)0)(20A90(4 Ω 

ZZ 

IZI 

LR 

TR 
L 

LR 

TL 
R 

FIGURE 15.83 

Ex. 15-17 Using the current divider rule, find the current through each parallel 
branch in Fig. 15.84. 

Z I (2Ω∠ − 90 ° )(5A ∠30 ° ) 10A ∠ − 60 ° I = C T = = R - L Z + Z − j2Ω + 1Ω + j8 Ω 1 + j6C R - L 

10A ∠ - 60 ° 
= ≅ 1.64A ∠ - 140.54 ° 

6.083 ∠80.54 ° 
Z I (1Ω + j8 Ω8Ω)( ∠30 ° ) 10A ∠ − 60 ° R - L TI C = = = 

Z + Z 6.083 ∠80.54 ° 1 + j6R - L C 

(8.06A ∠82.87 ° )(5A ∠30 ° )
= 

6.083 ∠80.54 ° FIGURE 15.84 
40.30A ∠112.87 ° 

= = 6.63A ∠32.33 ° 
6.083 ∠80.54 ° 

Frequency Response of Parallel Elements 

For parallel elements, it is important to remember that the smallest parallel 
resistor or the smallest parallel reactance will have the most impact on the real 
or imaginary component, respectively, of the total impedance. 

ET 242 Circuit Analysis II – Parallel ac circuits analysis Boylestad 10 

In Fig. 15.85, the frequency response has been included for each element of a 
parallel R-L-C combination. At very low frequencies, the importance of the coil 
will be less than that of the resistor or capacitor, resulting in an inductive network 
in which the reactance of the inductor will have the most impact on the total 
impedance. As the frequency increases, the impedance of the inductor will increase 
while the impedance of the capacitor will decrease. 

FIGURE 15.85 Frequency response for parallel R-L-C elements. 
ET 242 Circuit Analysis II – Parallel ac circuits analysis Boylestad 11 
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FIGURE 15.86 Determining the frequency response of a parallel R-L network. 

Let us now note the impact of frequency 
on the total impedance and inductive 
current for the parallel R-L network in 
Fig. 15.86 for a frequency range through 
40 kHz. 

ZT In Fig. 15.87, XL is very small at low frequencies compared to R, 
establishing XL as the predominant factor in this frequency range. As the frequency 
increases, XL increases until it equals the impedance of resistor (220 Ω). The 
frequency at which this situation occurs can be determined in the following manner: 

FIGURE 15.87 The frequency response of the individual elements of a parallel R-L network. 

kHz 

H 

L 

Rfand 

RLfX L 

75.8
)104(2 

220 
2 

2 

3 

2 

2 

≅ 

× 

Ω 
= 

= 

== 

−π 

π 

π 

A general equation for the total impedance in vector form can be developed in the 
following manner: 

/R)Xtan(90
XR 

RXZand 

/RXtanXR 

90RX 

jXR 

)90)(X0(R 

ZZ 

ZZZ 

L 
1 

2 
L 

2 

L 
T 

L 
12 

L 
2 

L 

L 

L 

LR 

LR 
T 

− 

− 

−°∠ 
+ 

= 

∠+ 

°∠ 
= 

+ 

°∠°∠ 
= 

+ 
= 

L 

1 

L 

1 
T 

2 
L 

2 

L 
T 

X 

Rtan 

X
Rtan90θand 

XR 

RXZ 

− 

− 

= 

−°= 

+ 
= 

/RXtan 
XR 

RIIIand 

/RXtanXR 

0RI 
jXR 

)0)(I0(R 

ZZ 

IZI 

L 
1 

2 
L 

2LLL 

L 
12 

L 
2 

LLR 

R 
L 

− 

− 

−∠ 
+ 

°∠ 
=∠= 

∠+ 

°∠ 
= 

+ 

°∠°∠ 
= 

+ 
= 

0θ 

IL Applying the current divider rule to the network in Fig. 15.86 results in the 
following: 

R 
Xtanθ 

bygivenisIleadsIwhichby 

,θanglephasetheand 

XR 

RXI 

determinedisIofmagnitudeThe 

L1 
L 

L 

L 

2 
L 

2 

L 
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−−= 

+ 
= 

ET 242 Circuit Analysis II – Parallel ac circuits analysis Boylestad 13 

In a series circuit, the total impedance of two or more elements in series is often 
equivalent to an impedance that can be achieved with fewer elements of different 
values, the elements and their values being determined by frequency applied. This is 
also true for parallel circuits. For the circuit in Fig. 15.94 (a), 

Equivalent Circuits 

°−∠= 
°∠ 

°∠ 
= 

°∠+°−∠ 

°∠°−∠ 
= 

+ 
= 9010Ω

905 

050 

9010Ω905Ω 

)90)(10Ω90(5Ω 

ZZ 

ZZZ 
LC 

LC 
T 

The total impedance at the frequency applied is equivalent to a capacitor with a 
reactance of 10 Ω, as shown in Fig. 15.94 (b). 

FIGURE 15.94 Defining the equivalence between two networks at a specific frequency.
ET 242 Circuit Analysis II – Parallel ac circuits analysis Boylestad 14 

Another interesting development appears if the impedance of a parallel circuit, such 
as the one in Fig. 15.95(a), is found in rectangular form. In this case, 

j1.44Ω1.92Ω 

36.872.40Ω
53.135 

9012 

03Ω904Ω 

)0)(3Ω90(4Ω 

ZZ 
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RL 
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= 

1.44 Ω 
25 

36 Ω 

RX 

XR
X 

and 

1.92 Ω 
25 

48 Ω 

RX 

XR
R 

2 
p 

2 
p 

p 
2 
p 

s 

2 
p 

2 
p 

2 
pp 

s 

== 
Ω+Ω 

ΩΩ 
= 

+ 
= 

== 
Ω+Ω 

ΩΩ 
= 

+ 
= 

22 

2 

22 

2 

)3()4(
)4()3(

)3()4(
)4)(3(

FIGURE 15.95 Finding the series 
equivalent circuit for a parallel R-L 
network. 

There is an alternative method to find same result 
by using formulas 

Ω4 
X 

XRXandΩ3 
1.92 

5.76Ω 

R 

XRR 
s 

2 
s 

2 
s 

p 
s 

2 
s 

2 
s 

p 0.
44.1

76.50.
92.1

)44.1()92.1( 22 

= 
Ω 

= 
+ 

=== 
Ω 

Ω+Ω 
= 

+ 
= 
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Ex. 15-18 Determine the series equivalent circuit for the network in Fig. 15.97. 

ET 242 Circ  – ms 16 

)(inductiveΩk3
89 

320kΩ 

kk 

kk 

RX 

XR
Xwith 

Ωk2 
89 

200kΩ 

kk 

kk 

RX 

XR
Rand 

kkkXXresultantX 

kR 

2 
p 

2 
p 

p 
2 
p 

s 

2 
p 

2 
p 

2 
pp 

s 

CLp 

p 

6.
)8()5(
)5()8(

25.
)8()5(

)5)(8(

549)( 

8 

22 

2 

22 

2 

== 
Ω+Ω 

ΩΩ 
= 

+ 
= 

== 
Ω+Ω 

ΩΩ 
= 

+ 
= 

Ω=Ω−Ω=−= 

Ω= 

FIGURE 15.98 The equivalent series circuit 
for the parallel network in Fig. 15.97. FIGURE 15.97 Example 15.18. 

Phase Measurement 
Measuring the phase angle between quantities is one of the most important 
functions that an oscilloscope can perform. Whenever you are using the dual-trace 
capability of an oscilloscope, the most important thing to remember is that both 
channel of a dual-trace oscilloscope must be connected to the same ground. 

Measuring ZT and θT 

For ac parallel networks, the total impedance can be found in the same manner as 
described for dc circuits: Simply remove the source and place an ohmmeter across 
the network terminals. However, 

For parallel ac networks with reactive elements, the total impedance cannot be 
measured with an ohmmeter. 

The phase angle between the applied voltage and the resulting source current is one 
of the most important because (a) it is also the phase angle associated with the total 
impedance; (b) it provides an instant indication of whether the network is resistive 
or reactive; (c) it reveals whether a network is inductive or capacitive; and (d) it can 
be used to find the power delivered to the network. 

ET 242 Circuit Analysis II – Parallel ac circuits analysis Boylestad 17 
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In Fig. 15.104, a resistor has been added to the configuration between the source 
and the network to permit measuring the current and finding the phase angle 
between the applied voltage and the source current. In Fig. 15.104, channel 1 is 
displaying the applied voltage, and channel 2 the voltage across the sensing 
resistor. Sensitivities for each channel are chosen to establishes the waveforms 
appearing on the screen in Fig. 15.105. 

FIGURE 15.104 Using an oscilloscope to 
measure ZT and θT. 

FIGURE 15.105 e and  vR for the 
configuration in Fig. 15.104. 

Using the sensitivities, the peak voltage Using Ohm' s law, the peak value of the current is 
across the sensing resistor is VR ( peak ) 20 mV sIT = = = 2 mA

Em = (4div.)(2V/div.) = 8 V Rs 10Ω 

The magnitude of the input impedance is then while the peak value of the voltage 
across the sensing resistor is xV E 8VZT = ≅ = = 4 kΩ

Is Is 2 mA
VR,(peak) = (2div.)(10mV/div.) = 20 mV 

10div. 1.7div.For the chosen horizontal sensitivity, each = 
waveform in Fig. 15.105 has a period T 360° θ 
defined by ten horizontal divisions, and the ⎛1.7 ⎞and θ = ⎜ ⎟360° = 61.2° phase angle between the two waveforms is ⎝ 10 ⎠ 
1.7 divisions. Using the fact that each In general,
period of a sinusoidal waveform 

(div. for θ )encompasses 360o, the following ratios can θ = ×360° 
be set up to determine the phase angle θ: (div. for T ) 

LT jXRj3.51kΩ1.93kΩ61.24kΩZ 

ismpedanceiotalthethereforeT
+=+=°∠= 

, 

ET 242 Circuit Analysis II – Parallel ac circuits analysis Boylestad 19 

5 



6 

    

HW 15-25 Find the total admittance and impedance of the circuits in Fig. 15.142. 
Identify the values of conductance and susceptance, and draw the admittance diagram. 

Figure 15.142 Problem 25. 
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Homework 15: 25, 27-32, 33, 39, 40, 47, 48 
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Series & Parallel ac Networks - Introduction 

In general, when working with series-parallel ac networks, consider the following 
approach: 

1. Redraw the network, using block impedances to combine obvious series and 
parallel elements, which will reduce the network to one that clearly reveals 
the fundamental structure of the system. 

2. Study the problem and make a brief mental sketch of the overall approach 
you plan to use. In some cases, a lengthy, drawn-out analysis may not be 
necessary. A single application of a fundamental law of circuit analysis may
result in the desired solution. 

3. After the overall approach has been determined, it is usually best to consider 
each branch involved in your method independently before tying them 
together in series-parallel combinations. In most cases, work back from the 
obvious series and parallel combinations to the source to determine the total 
impedance of the network. 

4. When you have arrived a solution, check to see that it is reasonable by 
considering the magnitudes of the energy source and the elements in the 
circuit.

ET 242 Circuit Analysis II – Series-Parallel Circuits Analysis Boylestad 3 

1 

OUTLINESOUTLINES 

• Introduction to Series - Parallel ac 

Circuits Analysis

• Reduction of series parallel Circuits 
to Series Circuits

• Analysis of Ladder Circuits 

Key Words: ac Circuit Analysis, Series Parallel Circuit, Ladder Circuit 
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Ex. 16-1 For the network in Fig. 16.1: 
a. Calculate ZT. b. Determine Is. c. Calculate VR and VC. d. Find IC. 
e. Compute the power delivered. f. Find Fp of the network. 

ET 242 Circuit Analysis II – Series-Parallel Circuits Anal 

a. As suggested in the 
introduction, the network has been 
redrawn with block impedances, as 
shown in Fig. 16.2. Impedance Z1 
is simply the resistor R of 1Ω, and 
Z2 is the parallel combination of 
XC and XL. 

Figure 16.1 Example 16.1. 

°−∠Ω=Ω−Ω=+= 

°−∠Ω= 
°∠ 

°∠Ω
= 

°∠Ω
= 

Ω+Ω− 

°∠Ω°−∠Ω
= 

+− 

°∠°−∠ 
== 

°∠= 

+= 

54.8008.661 

906 
901 

06 
1 

06 
32 

)903)(902(

)90)(90(// 

0 

21 

2 

1 

21 

jZZZand 

j 

jj 

jXjX 

XXZZZ 

RZ 

withZZZ 

bydefinedisimpedancetotalThe 

T 

LC 

LC 
LC 

T 
Figure 16.2 Network in Fig. 16.1 
after assigning the block impedances. 

E 120∠0° b. I = = = 19.74A∠80.54° s Z ∠ − 6.08Ω 80.54° T 

c. Referring to Fig.16.2. we find that V and V can be found R C 

by a direct application of Ohm' s law : 
V = I Z = (19.74A∠80.54° ∠)(1Ω °0 ) = 19.74V∠80.54° R s 1 

V = I Z = (19.74A∠80.54° ∠ − )(6Ω °90 ) = 118.44V∠ − 9.46° C s 2 

d. Now that V is known, the current I can be also C C 

found using Ohm' s law : 
V 118.44V∠ − 9.46° CI = = = 59.22A∠80.54° C Z 2Ω∠ − 90° C 

2 2e. P = I R = (19.74A) (1Ω1= 389.67 W del s 

f . F = cosθ = cos80.54° = 0.164 leading p 
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Ex. 16-2 For the network in Fig. 16.3: 
a. If I is 50A∟30o, calculate I1 using the current divider rule. 
b. Repeat part (a) for I2. 
c. Verify Kirchhoff’s current law at one node. 

Figure 16.3 Example 16.2. 

Figure 16.4 Network in Fig. 16.3 
after assigning the block impedances. (checks)3050A3050A 

j25.043.31 

j34.57)(-36.12j9.57)-(79.43 
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IIIc 
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83.13250 

53.135Ω 

)30)(50A53.13(5 Ω 

ZZ 
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Ex. 16-3 For the network in Fig. 16.5: 
a. Calculate the voltage VC using the voltage divider rule. 
b. Calculate the current Is. 

Figure 16.5 Example 16.3. 

Figure 16.6 
Network in 
Fig. 16.5 after 
assigning the 
block 
impedances. 
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Ex. 16-4 For Fig. 16.7: 
a. Calculate the current Is. 
b. Find the voltage Vab. 

Figure 16.7 Example 16.4. 

Figure 16.8 Network in Fig. 16.7 after assigning the 
block impedances. 
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Ex. 16-6 For the network in Fig. 16.12: 
a. Determine the current I. 
b. Find the voltage V. 
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Figure 16.12 Example 16.6. 

Figure 16.8 
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Ex. 16-7 For the network in Fig. 16.14: 
a. Compute I. b. Find I1, I2, and I3 c. Verify KCL by showing that 
I = I1 + I2 + I3. d. Find total impedance of the circuit;. 
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Figure 16.14 Example 16.7. 

Figure 16.15 Network in Fig. 16.14 following 
the assignment of the subscripted impedances. 

ET 242 Circuit An  – 11 

°+∠= 
°−∠Ω

°∠ 
== 

°−∠= 
°∠Ω
°∠ 

== 

°∠= 
°∠Ω
°∠ 

== 

87.3620 
87.3610 

0200 

13.5340
13.535 
0200 

020 
010 
0200 

,. 

3 
3 

2 
2 

1 
1 

AV 

Z 

EI 

AV 

Z 

EI 

AV 

Z 

EI 

branchesparallelacrosssametheisvoltagetheSinceb 

°∠Ω= 
°−∠

== 

−=− 

++−++= 

°+∠+°−∠+°∠=− 

++= 

44.1817.3
435.18316.0

11 . 

)(20602060 
)1216()3224()020(
87.362013.53400202060 

. 321 

SY
Zd 

checksjj 
jjj 

j 
IIIIc 

T 
T 

Ex. 16-8 For the network in Fig. 16.18: a. Calculate the total impedance ZT. b. 
Compute I. c. Find the total power factor. d. Calculate I1 and I2. e. 
Find the average power delivered to the circuit. 
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Figure 16.18 
Example 16.8. 

Figure 16.19 Network in 
Fig. 16.14 following the 
assignment of the 
subscripted impedances. 
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Ladder networks were discussed in some detail in Chapter 7. This section will simply 
apply the first method  described in Section 7.6 to the general sinusoidal ac ladder 
network in Fig. 16.22. The current I6 is desired.

 – 

Ladder Networks 
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Figure 16.22 
Ladder network. 

Figure 16.23 Defining an approach to the 
analysis of ladder networks. 

HW 16-13 Find the average power delivered to R4 in Fig. 16.51. 

Figure 16.51 Problem 13. 

Homework 16: 
1-8, 10, 12-14 
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Methods of Analysis and Selected Topics (AC) 
For the net works with two or more sources that are not in series or parallel, the 
methods described the methods previously described can not be applied. Rather, 
methods such as mesh analysis or nodal analysis to ac circuits must be used. 

Independent Versus Dependent (Controlled) Sources 

In the previous modules, each source appearing in the analysis of dc or ac networks 
was an independent source, such as E and I (or E and I) in Fig. 17.1. 

The term independent specifies that the magnitude of the source is independent of 
the network to which it is applied and that the source display its terminal 
characteristics even if completely isolated. 

A dependent or controlled source is one whose magnitude is determined (or 
controlled) by a current or voltage of the system in which it appears. 

Figure 17.1 Independent sources. 

Boylestad 3 

1 

ET162 Circuit Analysis – Ohm’s Law Boylestad 4 

Figure 17.3 Special notation for 
controlled or dependent sources. 

Currently two symbols are used for controlled sources. One simply uses the 
independent symbol with an indication of the controlling element, as shown in Fig. 
17.2(a). In Fig. 17.2(a), the magnitude and phase of the voltage are controlled by a 
voltage V elsewhere in the system, with the magnitude further controlled by the 
constant k1. In Fig. 17.2(b), the magnitude and phase of the current source are 
controlled by a current I elsewhere in the system, with the magnitude with further 
controlled by k2. To distinguish between the dependent and independent sources, 
the notation in Fig. 17.3 was introduced. Possible combinations for controlled 
sources are indicated in Fig. 17.4. Note that the magnitude of current sources or 
voltage sources can be controlled by voltage and a current. 

Figure 17.2 Controlled 
or dependent sources. 

Figure 17.4 Conditions of V = 0V and 
I = 0A for a controlled source. 

– 



Solve the resulting simultaneous linear equations for the assumed loop currents. 
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Figure 17.5 Source Conversion. 

ET 242 Circuit Analysis II – Parallel ac circuits analys 

Source Conversions 
When applying the methods to be discussed, 
it may be necessary to convert a current 
source to a voltage source, or a voltage 
source to a current source. This source 
conversion can be accomplished in much the 
same manner as for dc circuits, except 
dealing with phasors and impedances instead 
of just real numbers and resistors. 

Independent Sources In general, the format for converting one type of 
independent source to another is as shown in Fig. 17.5. 

Ex. 17-1 Convert the voltage source in Fig. 
17.6(a) to a current source. 

Figure 17.6 Example 17.1. 
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Ex. 17-2 Convert the current source in Fig. 17.7(a) to a voltage source. 
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Figure 17.7 Example 17.2. 

Dependent Sources For the dependent sources, direct conversion in Fig. 
17.5 can be applied if the controlling variable (V or I in Fig.17.4) is not determined by 
a portion of the network to which the conversion is to be applied. For example, in Figs. 
17.8 and 17.9, V and I, respectively, are controlled by an external portion of the 
network. 

ET 242 Circuit Analysis II – Parallel ac circuits analysis Boylestad 2 

Ex. 17-3 Convert the voltage source in Fig. 17.7(a) to a current source. 
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Ex. 17-4 Convert the current source in 
Fig. 17.9(a) to a voltage source. 

Figure 17.9 Source conversion with a current-controlled current source. 

Figure 17.8 Source conversion with a 
voltage-controlled voltage source. 
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Mesh Analysis 
Independent Voltage Sources The general approach to mesh analysis for 

independent sources includes the same sequence of steps appearing in previous 
module. In fact, throughout this section the only change from the dc coverage is to 
substitute impedance for resistance and admittance for conductance in the general 
procedure. 

1. Assign a distinct current in the clockwise direction to each independent closed 
loop of the network. 

2. Indicate the polarities within each loop for each impedance as determined by the 
assumed direction of loop current for that loop. 

3. Apply KVL around each closed loop in the clockwise direction. Again, the 
clockwise direction was chosen to establish uniformity and to prepare us for the 
formed approach to follow. 
a. If an impedance has two or more assumed currents through it, the total current through 

the impedance is the assumed current of the loop in which KVL law is being applied. 

b. The polarity of a voltage source is unaffected by the direction of the assigned loop currents. 

4. 
The technique is applied as above for all networks with independent sources or for networks with 
dependent sources where the controlling variable is not a part of the network under investigation. 

y  – y 
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Ex. 17-5 Using the general approach to mesh analysis, find the current I1 in Fig.17.10. 

Figure 17.10 Example 17.5. 
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Figure 17.11 Assigning the mesh currents and 
subscripted impedances for the network in Fig.17.10. 
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Dependent Voltage Sources For dependent voltage sources, the procedure 
is modified as follow: 

1. Step 1 and 2 are the same as those applied for independent sources. 

2. Step 3 is modifies as follows: Treat each dependent source like an independent 
when KVL is applied to each independent loop. However, once the equation is 
written, substitute the  equation for the controlling quantity to ensure that the 
unknowns are limited solely to the chosen mesh currents. 

3. Step 4 is as before.

 – 

Ex. 17-6 Write the mesh currents for the network in Fig. 17.12 having a dependent 
voltage source. 
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Figure 17.12 Applying mesh analysis to a network with 
a voltage-controlled voltage source. 

Independent Current Sources For independent current sources, the 
procedure is modified as follow: 

1. Step 1 and 2 are the same as those applied for independent sources. 

2. Step 3 is modifies as follows: Treat each current source as an open circuit and 
write the mesh equations for each remaining independent path. Then relate the 
chosen mesh currents to the dependent sources to ensure that the unknowns of 
the final equations are limited to the mesh currents. 

3. Step 4 is as before.  – 

Ex. 17-7 Write the mesh currents for the network in Fig. 17.13 having an 
independent current source. 
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Figure 17.13 Applying mesh analysis to a network with an 
independent current source. 

Dependent Current Sources For dependent current sources, the 
procedure is modified as follow: 

1. Step 1 and 2 are the same as those applied for independent sources. 

2. Step 3 is modifies as follows: The procedure is essentially the same as that 
applied for dependent current sources, except now the dependent sources have to 
be defined in terms of the chosen mesh currents to ensure that the final equations 
have only mesh currents as the unknown quantities. 

3. Step 4 is as before. 
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 – 

Ex. 17-8 Write the mesh currents for the network in Fig. 17.14 having an 
dependent current source. 
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Nodal Analysis 
Independent Sources Before examining the application of the method to 
ac networks, a review of the appropriate sections on nodal analysis of dc circuits is 
suggested since the content of this section is limited to the general conclusions. The 
fundamental steps are the following: 

1. Determine the number of nodes within the network. 
2. Pick a reference node and label each remaining node with a subscripted value 
of voltage: V1, V2, and so on. 

3. Applying KCL at each node except the reference. 
4. Solve the resulting equations for the nodal voltages. 

Figure 17.14 Applying mesh analysis to a network with an 
current-controlled current source. 

Ex. 17-12 Determine the voltage across the inductor for the network in Fig. 17.23. 

FIGURE 17.23 
Example 17.12. 

Steps 1 and 2 are as indicated in Fig. 17.24, 

Figure 17.24 Assigning the nodal voltages and subscripted impedances 
to the network in Fig. 17.23. 
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Figure 17.25 Applying KCL to the nodes V1 in Fig. 17.24. Figure 17.26 Applying KCL to the nodes V2 in Fig. 17.24. 

Rearranging terms : 

⎡ 1 1 1 ⎤ ⎡ 1 ⎤ E1V1 ⎢ + + ⎥ −V2 ⎢ ⎥ = 
⎣Z1 Z2 Z3 ⎦ ⎣ Z3 ⎦ Z1 

Note Fig.17.26 for the application 
of KCL to the node V2 . 

0 = I3 + I4 + I 
V2 −V1 V2+ + I = 0

Z3 Z4 

Regarding terms : 

⎡ 1 1 ⎤ ⎡ 1 ⎤V2 ⎢ + ⎥ −V1 ⎢ ⎥ = −I 
⎣ Z3 Z4 ⎦ ⎣ –Z3 ⎦ 

Grouping equations : 

⎡ 1 1 1 ⎤ ⎡ 1 ⎤ E 
1V ⎢ + + ⎥ − 2V ⎢ ⎥ = 
⎣ 1Z Z2 Z3 ⎦ ⎣ Z3 ⎦ 1Z 

⎡ 1 ⎤ ⎡ 1 1 ⎤V1 ⎢ ⎥ −V2 ⎢ + ⎥ = I 
⎣ Z3 ⎦ ⎣ Z3 Z4 ⎦ 

1 1 1 1 1 1
+ + = + + = 2.5 mS∠ − 2.29 ° 

1Z Z2 Z3 0.5 kΩ j10kΩ 2kΩ 

1 1 1 1
+ = + = 0.539 mS∠21.80° 

Z3 Z4 2kΩ − j k 5 Ω 
Boylestad 15 

and 
V1[2.5mS ∠ − 2.29 °] − V2 [0.5mS ∠0°] = 24 mA ∠ 21 .80 ° 
V1[0.5mS ∠0°] − V2 [0.539 mS ∠21 .80 °] = 4mS ∠0° 

24 mA ∠0° − 0.5mS ∠0° 
4mA ∠0° − 0.539 mS ∠ 21 .80 ° 

with V1 = 
2.5mS ∠ − 2.29 ° − 0.5mS ∠0° 

0.5mS ∠0° − 0.539 mS ∠ 21 .80 ° 
(24 mA ∠0°)(−0.539 mS ∠ 21 .80 °) + (0.5mS ∠0°)(4mA ∠0°)

= 
(2.5mS ∠ − 2.29 °)(−0.539 mS ∠21 .80 °) + (0.5mS ∠0°)(0.5mS ∠0°) 

− 6 − 6− 12 .94 ×10 V∠ 21 .80 ° + 2 ×10 V∠0° 
= − 6 − 6− 1.348 ×10 ∠19 .51 ° + 0.25 ×10 ∠0° 

− 6 − 6− (12 .01 + j4.81) ×10 V + 2 ×10 V 
= − 6 − 6− (1.271 + j0.45) ×10 + 0.25 ×10 
− 10 .01V − j4.81V 11 .106V∠ − 154 .33 ° 

= = 
− 1.021 − j0.45 1.116 ∠ − 156 .21 ° 

V1 = 9.95V∠1.88 ° 
ET 242 Circuit Analysis II – Selected Network Theorems for AC Circuits Boylestad 16 
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Figure 17.28 Applying nodal analysis to a network with a 
current-controlled current source. 

ET 242 Circuit Analysis II – Selected Network Theorems for AC Circ 
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⎤⎡⎤⎡ 
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⎥
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⎢
⎡ −− 

=⎥
⎦

⎢
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−⎥
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⎢
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−
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+= 
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kIIIVnodeAt 

I
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I 
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VV 
Z 
V 

IIIVnodeAtStep 
Step 1 and 2 are as defined in Fig .17 .28 . 
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Ex. 17-15 Write the nodal equations for the network in Fig. 17.30 having an 
dependent voltage source between two defined nodes. 

Steps 1 and 2 are as indicated in Fig. 17.30. 

Step 3: Replacing the dependent source μVx 
with a short-circuit equivalent results in the 
following equation when KCL is applied to at 
node V1: 

12 

212 

2 

21 

1 

1 

21 

1 

0)( 

VVor 

VVVVand 

I
Z 

VV 
Z 
V 

III 

x 

µ 
µ 

µµ 

+ 
= 

−== 

=−
−

+ 

+= 

resulting in two equations and two unknown. Note that because the impedance Z3 is 
in parallel with a voltage source, it does not appear in the analysis. It will, however, 
affect the current through the dependent voltage source. 

Figure 17.30 Applying nodal analysis to a 
network with a voltage-controlled voltage source. 

HW 17-10 An electrical system is rated 10 kVA, 200V at a leading power factor. 
a. Determine the impedance of the system in rectangular coordinates. 
b. Find the average power delivered to the system. 

Dependent Current Sources For dependent current sources, the 
procedure is modified as follow: 

1. Step 1 and 2 are the same as those applied for independent sources. 

2. Step 3 is modifies as follows: Treat each dependent current source like an 
independent source when KCL is applied to each defined node. 

3. Step 4 is as before. 
Ex. 17-13 Write the nodal equations  for the network in Fig. 17.28 having a 

dependent current source. 

Ex. 17-14 Write the nodal equations for the network in Fig. 17.29 having an 
independent source between two assigned nodes. 

Figure 17.29 Applying nodal analysis to a network 
with an independent voltage source between defined 
nodes. 

Dependent Voltage Sources between Defined Nodes For dependent 
voltage sources between defined nodes, the procedure is modified as follow: 

Step 3: Replacing the independent source E1 
with a short-circuit equivalent results in a 
super-node that generates the following 
equation when KCL is applied to node V1: 

Steps 1 and 2 are as indicated in Fig. 17.29. 

V VI1 = 1 2+ + I2Z1 Z2 

with V −V = E2 1 1 

and we have two equations and two unknowns. 

1. Step 1 and 2 are the same as those applied for independent voltage sources. 
2. Step 3 is modifies as follows: The procedure is essentially the same as that applied 
for independent voltage sources, except now the dependent sources have to be 
defined in terms of the chosen voltages to ensure that the final equations have only 
nodal voltages as their unknown quantities. 

–3. Step 4 is as before. 

Homework 17: 2-4, 5, 6, 14, 15 
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EET1222/ET242 Circuit Analysis II 

Network Theorems (AC) 

Electrical and Telecommunications 
Engineering Technology Department 

Professor Jang 
Prepared by textbook based on “Introduction to Circuit Analysis” 

by Robert Boylestad, Prentice Hall, 11th edition. 

OUTLINESOUTLINES 

Introduction to Network Theorems (AC) 

Thevenin Theorem 

Superposition Theorem 

Maximum Power Transfer Theorem 

Key Words: Network Theorem, Thevinin, Superposition, Maximum Power 

ET 242 Circuit Analysis II – Network Theorems for AC Circuits Boylestad 2 

Network Theorems (AC) - Introduction 
This module will deal with network theorems of ac circuit rather than dc circuits 
previously discussed. Due to the need for developing confidence in the application of the 
various theorems to networks with controlled (dependent) sources include independent 
sources and dependent sources. Theorems to be considered in detail include the 
superposition theorem, Thevinin’s theorem, maximum power transform theorem. 

Superposition Theorem 
The superposition theorem eliminated the need for solving simultaneous linear 
equations by considering the effects of each source independently in previous module 
with dc circuits. To consider the effects of each source, we had to remove the remaining 
sources . This was accomplished by setting voltage sources to zero (short-circuit 
representation) and current sources to zero (open-circuit representation). The current 
through, or voltage across, a portion of the network produced by each source was then 
added algebraically to find the total solution for the current or voltage. 

The only variation in applying this method to ac networks with independent sources is 
that we are now working with impedances and phasors instead of just resistors and real 
numbers. BoylestadET 242 Circuit Analysis II – Network Theorems for AC Circuits 3 

Independent Sources 

ET 242 Circuit Analysis II – Network Theorems for AC Circuits 4 

Ex. 18-1 Using the superposition theorem, find the current I through the 4Ω 
resistance (XL2) in Fig. 18.1. 

Figure 18.1 Example 18.1. Figure 18.2 Assigning the subscripted impedances to the network in Fig.18.1. 
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Figure 18.8 Determining the effect of the current 
source I1 on the current I of the network in Fig.18.6. 

Figure 18.9 Determining the effect of the voltage 
source E1 on the current I of the network in Fig.18.6. 

Figure 18.10 Determining 
the resultant current I for 
the network in Fig. 18.6. 

Figure 18.3 Determining the effect 
of the voltage  source E1 on the 
current I of the network in Fig. 18.1. 

°−∠== 
Ω 

Ω− 
= 

+ 
= 

9075.3
1 

75.3)25.1)(3( 

)( 
3 

1 

A
j 

A 
j3-j4Ω 

Ajj 

ruledividercurrent
ZZ 

IZ
I'and 

2 

s3 

Figure 18.4 Determining the 
effect of the voltage  source E2 
on the current I of the network 
in Fig. 18.1. 
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AIII 
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throughcurrentresultantThe 

2L

Ex. 18-2 Using the superposition, find the current I through 
the 6Ω resistor in Fig.18.6. 

Figure 18.5 Determining the resultant 
current for the network in Fig. 18.1. 

Figure 18.6 Example 18.2. 

Figure 18.7 Assigning the subscripted 
impedances to the network in Fig.18.6. 
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Ex. 18-3 Using the superposition, find the voltage across the 6Ω resistor in 
Fig.18.6. Check the results against V6Ω = I(6Ω), where I is the current found 
through the 6Ω resistor in Example 18.2. 

Figure 18.6 

°∠= 

Ω°∠= 

Ω′′= 

°∠= 

Ω°∠= 

Ω′ = 

Ω 

Ω 

43.4896.18
)6)(43.4816.3(

)6(
, 

43.1084.11
)6)(43.1089.1(

)6(
, 

'' 
6 

' 
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V 
A 

IV 
sourcevoltagetheFor 

V 
A 

IV 
sourcecurrenttheFor 

°∠=+= 

+++−= 

°∠+°∠= 

Ω′′+Ω′= 

Ω 

Ω 

2.705.260.2598.8
)18.1458.12()82.1060.3( 

43.4896.1843.1084.11
)6()6(

)11.18.(6 

6 

VVjV 
VjVVjV 

VV 
VVV 

isFigresistorthevoltagetotaltheFor 

)(2.705.26
)6)(2.7042.4()6(

, 

6 

checksV 
AIV 
haveweresulttheCheck 

°∠= 

Ω°∠=Ω= Ω 

Figure 18.11 
Determining the resultant 
voltage V6Ω for the 
network in Fig. 18.6. 
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Dependent Sources For dependent sources in which the controlling variable 
is not determined by the network to which the superposition is to be applied, the 
application of the theorem is basically the same as for independent sources. 

Ex. 18-5 Using the superposition, determine the current I2 for the network in 
Fig.18.18. The quantities μ and h are constants. 

Figure 18.18 Example 18.5. Figure 18.19 Assigning the subscripted impedances to the network in Fig.18.18. 
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handVVFor 
hIVIII 

isIcurrenttheFor 
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µ 

Figure 18.20 Determining the effect of the voltage-controlled 
voltage source on the current I2 for the network in Fig.18.18. 

Figure 18.21 Determining the effect of the current-controlled 
current source on the current I2 for the network in Fig.18.18. 
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– 

Independent Sources 
1. Remove that portion of the network across which the Thevenin equivalent circuit is to be found. 
2. Mark (o, •, and so on) the terminal of the remaining two-terminal network. 
3. Calculate ZTH by first setting all voltage and current sources to zero (short circuit and open 
circuit, respectively) and then finding the resulting impedance between the marked terminals. 

4. Calculate ETH by first replacing the voltage and current sources and then finding the open-circui 
voltage between the marked terminals. 

5. Draw the Thevenin equivalent circuit with the portion of the circuit previously removed replaced 
between the terminals of the Thevinin equivalent circuit. 

Thevenin’s Theorem 
Thevenin’s theorem, as stated for sinusoidal ac circuits, is changed only to include the 
term impedance instead of resistance, that is, 
any two-terminal linear ac network can be replaced with an equivalent circuit 
consisting of a voltage source and an importance in series, as shown in Fig. 18.23. 

Since the reactances of a circuit are frequency dependent, the
Thevinin circuit found for a particular network is applicable 
only at one frequency. The steps required to apply this method 
to dc circuits are repeated here with changes for sinusoidal ac 
circuits. As before, the only change is the replacement of the 
term resistance with impedance. Again, dependent and 
independent sources are treated separately. 

Figure 18.23 Thevenin equivalent circuit for ac networks. 

– rms Boylestad 

Ex. 18-7 Find the Thevenin equivalent circuit for the network external to resistor 
R in Fig. 18.24. 

Figure 18.24 
Example 18.7. 
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LL 

Figure 18.26 Determine 
the Thevenin impedance 
for the network in 
Fig.18.24. 

Figure 18.27 Determine 
the open-circuit Thevenin 
voltage for the network in 
Fig.18.24. 

Figure 18.25 Assigning the 
subscripted impedances to the 
network in Fig.18.24. 
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 – 13 

Step 5: The Thevenin equivalent circuit is shown in Fig. 18.28. 

Figure 18.28 The Thevenin 
equivalent circuit for the 
network in Fig.18.24. 

Ex. 18-8 Find the Thevenin equivalent circuit for the network external to resistor 
to branch a-a´ in Fig. 18.24. 
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Figure 18.29 
Example 18.8. 

Figure 18.30 Assigning the 
subscripted impedances for 
the network in Fig.18.29. 
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Figure 18.26 Determine the Thevenin 
impedance for the network in Fig.18.29. 

Figure 18.27 Determine the open-
circuit Thevenin voltage for the 
network in Fig.18.24. 

Step 5: The Thevenin equivalent circuit is shown in Fig. 18.33. 

Figure 18.33 The Thevenin equivalent circuit for the network in Fig.18.29.

 – le 

Dependent Sources For dependent sources with a controlling variable not in 
the network under investigation, the procedure indicated above can be applied. However, 
for dependent sources of the other type, where the controlling variable is part of the 
network to which the theorem is to be applied, another approach must be used. 

The new approach to Thevenin’s theorem can best be 
introduced at this stage in the development by considering the 
Thevenin equivalent circuit in Fig. 18.39(a). As indicated in fig. 
18.39(b), the open-circuit terminal voltage (Eoc) of the Thevenin 
equivalent circuit is the Thevenin equivalent voltage; that is 

If the external terminals are short circuited as in Fig. 18.39(c), 
the resulting short-circuit current is determined by 

or, rearranged, 

and 

Thoc EE = 

Th 

Th 
sc Z 

EI = 

sc 

Th 
Th I 

EZ = 

sc 

oc 
Th I 

EZ = 

Figure 18.39 Defining an alternative approach for determining the Thevenin impedance.  – ork Theor 

Ex. 18-11 Determine the Thevenin equivalent circuit for the network in Fig. 18.24. 
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Figure 18.47 Example 18.11. 

Figure 18.48 Determine the Thevenin 
impedance for the network in Fig.18.47. 

Figure 18.49 Determine the short-
circuit current for the network in 
Fig.18.47. 

Figure 18.50 Determining the 
Thevenin impedance using the 
approach ZTh = Eg/Ig. 
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Maximum Power Transfer Theorem 
When applied to ac circuits, the maximum power transfer theorem states that 

maximum power will be delivered to a load when the load impedance is the 
conjugate of the Thevenin impedance across its terminals. 

That is, for Fig. 18.81, for maximum power transfer to the load, 

ThloadThL 

ThLThL 

jXjXandRR 
form,rrectangulainor,

andZZ 
Z 

m=±= 

−== θθ 

Figure 18.81 Defining the 
conditions for maximum power 
transfer to a load. 
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Figure 18.82 Conditions for maximum power transfer to ZL. 
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Ex. 18-19 Find the load impedance in Fig. 18.83 for maximum power to the load, 
and find the maximum power. 

ET 242 Circuit Analysis II – Selected Network Theorems for AC 
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Figure 18.84 Determining (a) ZTh and (b) ETh for the 
network external to the load in Fig. 18.83. 

Figure 18.83 Example 18.19. 

Determine ZTh [Fig.18.84(a)] : 
Z1 = R − jXC = 6Ω − j8Ω =10Ω∠ − 53.13° 
Z2 = + jX L = j8Ω 

Z Z (10Ω∠ − 53.13°)(8Ω∠90°)Z = 1 2 = Th Z1 + Z2 6Ω − j8Ω + j8Ω 

80Ω∠36.87° 
= = 13.33Ω∠36.87° =10.66Ω + j8Ω 

6∠0° 

HW 18-6 Using superposition, determine the current IL (h = 100) for the network in 
Fig. 18.112. 

Figure 18.112 Problems 6 and 20. 
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Power (AC) - Introduction 
The discussion of power in earlier module of response of basic elements included 
only the average or real power delivered to an ac network. We now examine the 
total power equation in a slightly different form and introduce two additional types 
of power: apparent and reactive. 

General Equation 
For any system as in Fig. 19.1, the power 
delivered to a load at any instant is 
defined by the product of the applied 
voltage and the resulting current; that is, 

p = vi 

In this case, since v and i are sinusoidal 
quantities, let us establish a general case 
where v = Vmsin(ωt + θ) 

Figure 19.1 Defining the power delivered to a load. 
and i = Imsinωt 
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 – 

The chosen v and i include all possibilities because, if the load is purely resistive, θ 
= 0°. If the load is purely inductive or capacitive, θ = 90° or θ = – 90°, respectively. 

Substituting the above equations for v and I into the power equation results in 

p = VmImsinωt sin(ωt + θ) 

If we now apply a number of trigonometric identities, the following form for the 
power equation results in: 

p = VI cosθ(1 – cos2ωt) + VI sinθ(sin2ωt) 

where V and I are rms values. 

Resistive Circuit 
For a purely resistive circuit (such as that 
in Fig. 19.2), v and i are in phase, and θ = 
0°, as appearing in Fig. 19.3. Substituting 
θ = 0° into the above equation. 

Figure 19.2 Determining the power delivered to a purely resistive load. Figure 19.3 Power versus time a purely resistive load. 

pR = VI cos(0°)(1− cos 2ω t) +VI sin(0°)sin 2ω t 
= VI (1− cos 2ω t) + 0 

or VI −VI cos 2ω tpR = 

where VI is the average or dc term and –VIcos2ωt is a negative cosine wave with 
twice the frequency of either input quantity and a peak value of VI. 

Note that T1 = period of input quantities 
T2 = period of power curve pR 

Consider also that since the peak and average values of the power curve are the 
same, the curve is always above the horizontal axis. This indicates that 

the total power delivered to a resistor will be dissipated in the form of heat. 

The average (real) power is VI; or, as a summary, 

– 

),(
2 

2 
2 Wwatts

R 
VRIIVVIp mm ==== 

The energy dissipated by the resistor (WR) over one full cycle of the applied 
voltage is the area under the power curve in Fig. 19.3. It can be found using the 
following equation: W = pt 
where p is the average value and t is the period of the applied voltage, that is 

WR = VIT1 or WR = VI / f1 (joules, J) 

Ex. 19-1 For the resistive circuit in Fig. 19.4, 
a. Find the instantaneous power delivered to the resistor at times t1 through t6. 
b. Plot the results of part (a) for one full period of the applied voltage. 
c. Find the average value of the curve of part (b) and compare the level to that   
determined by Eq. (19.3). 
d. Find the energy dissipated by the resistor over one full period of the applied voltage. 

Figure 19.4 Example 19.1. 

Figure 19.5 Assigning the subscripted 
impedances to the network in Fig.18.6. 

WivpandVvt 
WAVivp 

AViandVvt 
WAVivp 

AViandVvt 
WivpandVvta 

RRRR 

RRR 

RR 

RRR 

RR 

RRRR 

00: 
9)5.1)(6(

5.14/66: 
36)3)(12(

33/1212: 
00:. 

4 

3 

2 

1 

=== 

=== 

=Ω== 

=== 

=Ω== 

=== 

WivpandVvt 
WAVivp 

AViandVvt 

RRRR 

RRR 

RR 

00: 
36)3)(12( 

34/1212: 

6 

5 

=== 

=−−== 

−=Ω−=−= 
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1 

mm 

1 
R 

mm 

RRR 

==== 

=== 

Figure 19.5 Power curve for Example 19.1. 

Apparent Power 
From our analysis of dc networks (and resistive elements earlier), it 
would seen apparent that the power delivered to the load in Fig. 
19.6 is determined by the product of the applied voltage and current, 
with no concern for the components of the load; that is, P = VI. 
However, the power dissipated, less pronounced for more reactive 
loads. Although the product of the voltage and current is not always 
the power delivered, it is a power rating of significant usefulness in 
the description and analysis of sinusoidal ac networks and in the 
maximum rating of a number of electrical components and systems. 
It is called the apparent power and is represented symbolically by 

Figure 19.6 Defining the 
apparent power to a load. 

S*. Since it is simply the product of voltage and current, its units are 
volt-amperes (VA). – 
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VAZISthen 
Z 
VIandIZVsinceor, 
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p 

== 

= 

= 

θ 

θ 

Figure 19.7 Demonstrating the reason for rating a 
load in kVA rather than kW. 

The reason for rating some electrical 
equipment in kilovolt-amperes rather 
than in kilowatts can be described using 
the configuration in Fig. 19.7. The load 
has an apparent power rating of 10 kVA 
and a current demand of 70 A is above 
the rated value and could damage the 
load element, yet the reading on the 
wattmeter is relatively low since the load 
is highly reactive. 

y  – y 

Figure 19.9 The power curve for a purely 
inductive load. 

Inductive Circuit and Reactive Power 
For a purely inductive circuit (such as that 
in Fig. 19.8), v leads i by 90°, as shown in 
Fig. 19.9. Therefore, in Eq. (19.1), θ = – 
90°. Substituting θ = – 90°, into Eq. (19.1), 
yields 

)11.19(2sin 
2sin0 

)2)(sin90sin()2cos1)(90cos(

tVIPor 
tVI 

tVItVIP 

L 

L 

ω 

ω 

ωω 

= 

+= 

°+−°= 
Figure 19.6 Defining the power level for a 
purely inductive load. 

where VI sin2ωt is a sine wave with twice the frequency of either input quantity 
and a peak value of VI. Note that the absence of an average or constant term in the 
equation. 

Plotting the waveform for pL (Fig. 19.9), we obtain 
T1 = period of either input quantity 

T2 = period of pL curve 

Note that over one full cycle of pL (T2), the area above the horizontal axis in Fig. 
19.9 is exactly equal to that below the axis. This indicates that over a full cycle of 
pL, the power delivered by the sources to the inductor is exactly equal to that 
returned to the source by the inductor. 

The net flow of power to the pure (ideal) inductor is zero over a full cycle, and no 
energy is lost in the transaction. 

The power absorbed or returned by the inductor at any instant of time t1 can be 
found simply by substituting t1 into Eq. (19.11). The peak value of the curve VI is 
defined as the reactive power associated with a pure inductor. The symbol for 
reactive power is Q, and its unit of measure is the volt-ampere reactive (VAR). 

Q L = VIsin θ (volt − ampere reactive , VAR ) 
where θ is the phase angle between V and I . 
For the inductor , 

Q L = VI (VAR ) (19.13) 
or , since V = IX L or I = V / X L 

2 
2 VQ = I X (VAR ) or Q = (VAR )L L L X L 

The energy stored by the inductor during the positive portion of the cycle (Fig.19.9) is 
equal to that returned during the negative portion and can be determined using the 
following equation: W = Pt 

Where P is the average value for the interval and t is the associated interval of time. 
The average value of the positive portion of a sinusoid equals 2(peak value/π) and t = 
T2/2. 

⎛ 2VI ⎞ ⎛ T2 ⎞ VIT2WL = ⎜ ⎟ × ⎜ ⎟ and WL = ( )J 
⎝ π ⎠ ⎝ 2 ⎠ π 

or, sin 2ce T = 1/ f 2 , where f 2 is the frequency 
of the pL ,curve we have 

⎛ VI ⎞WL = ⎜⎜ ⎟⎟ ( )J (19.17) 
⎝π f 2 ⎠ 

Since the frequency f 2 of power curve is twice that 
,of the input quantity if we substitute the frequency 

f1 ,of the input voltage or current Eq .(19.17) becomes 
VI VIWL = = where V = IX L = Iω1 Lπ (2 f1 ) 1ω 

(I 1ω )L I 2so that WL = and WL = LI ( )J 
1ω 

Ex. 19-2 For the inductive circuit in Fig. 19.10, 
a. Find the instantaneous power level for the inductor at times t1 through t5. 
b. Plot the results of part (a) for one full period of the applied voltage. 
c. Find the average value of the curve of part (b) over one full cycle of the applied voltag 
and compare the peak value of each pulse with the value determined by Eq. (19.13). 
d. Find the energy stored or released for any one pulse of the power curve. 
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Figure 19.10 Example 19.2. 
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b. The resulting plot of vL, iL, and 
pL appears in Fig. 19.11. 

Figure 19.11 Power curve for Example 19.2. 

c. The average value for the curve in 
Fig. 19.11 is 0W over one  full cycle 
of the applied voltage. The peak value 
of the curve is 10W which compares 
directly with that obtained from the 
product 

d. The average stored or released 
during each pulse of the power curve 
is: 

WAVIV
VI mm 10 

2 
)2)(10(

2 
=== 

mJ 
srad 

AVIVVIW mm 
L 50 

)/200(2
)2)(10(

2 21 

==== 
ωω 

Power-Factor Correction 
The design of any power transmission system is very sensitive to the magnitude of the 
current in the lines as determined by the applied loads. Increased currents result in 
increased power losses (by squared factor since P = I2R) in the transmission lines due 
to the resistance of the lines. Heavier currents also require larger conductors, 
increasing the amount of copper needed for the system. 
Every effort must therefore be made to keep current levels at a minimum. Since the 
line voltage of a transmission system is fixed, the apparent power is directly related to 
the current level. In turn, the smaller the net apparent power, the smaller the current 
drawn from the supply. Minimum current is therefore drawn from a supply when S = 
P and QT = 0. Note the effect of decreasing levels of QT on the length (and 
magnitude) of S in Fig. 19.28 for the same real power. 
The process of introducing reactive elements to 
bring the power-factor closer to unity is called is 
called power-factor correction. Since most loads 
are inductive, the process normally involves 
introducing elements with capacitive terminal 
characteristics having the sole purpose of 
improving the power factor. 

ET 242 Circuit An  –Figure 19.28 Demonstrating the impact of power-factor correction on the power triangle of a network.

 – Boylestad 14 

In Fig. 19.29(a), for instance, an inductive load is drawing a current IL that has a real 
and an imaginary component. In Fig. 19.29(b), a capacitive load was added in parallel 
with original load to raise the power factor of the total system to the unity power-
factor level. Note that by placing all the elements in parallel, the load still receives the 
same terminal voltage and draws same current IL. In other words, the load is unaware 
of and unconcerned about whether it is hooked up as shown in Fig. 19.29(a) or (b). 

Figure 19.29 Demonstrating the impact of a capacitive element on 
the power factor of a network. 

The result is a source current whose 
magnitude is simply equal to the real 
part of the inductive load current, 
which can be considerably less than 
the magnitude of the load current in 
Fig. 19.29(a). In addition, since the 
phase angle associated with both the 
applied voltage and the source 
current is same, the system appears 
“resistive” at the input terminals, and 
all of power supplied is absorbed, 
creating maximum efficiency for a 
generating utility. 
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Power Meter 
The power meter in Fig. 19.34 uses a sophisticated 
electronic package to sense the voltage and current 
levels and has an analog-to-digital conversion unit that 
display the levels in digital form. It is capable of 
providing a digital readout for distorted nonsinusoidal 
waveforms, and it can provide the phase power, total 
power, apparent power, reactive power, and power 
factor. The power quality analyzer in Fig. 19.35 can 
also display the real, reactive, and apparent power 
levels along with the power factor. However, it has a 
board range of other options, including providing the 
harmonic content of up to 51 terms for the voltage, 
current, and power. 

Figure 19.34 Digital single-phase and three-phase 
power meter. 
Figure 19.35 Power quality analyzer capable of 
displaying the power in watts, the current in amperes, 
and the voltage in volts. 

Effective Resistance 
The resistance of a conductor as determined by the equation R = ρ(l/A) is often called the dc, ohmic, 
or geometric resistance. It is a constant quantity determined only by the material used and its 
physical dimensions. In ac circuits, the actual resistance of a conductor (called effective resistance) 
differs from the dc resistance because of the varying currents and voltages that introduce effects not 
present in dc circuits. These effects include radiation losses, skin effect, eddy currents, and 
hysteresis losses. – 
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Effective Resistance – Experimental Procedure 
The effective resistance of an ac circuit cannot be measured by the ratio V/I since this 
ratio is now the impedance of a circuit that may have both resistance and reactance. 
The effective resistance can be found, however, by using the power equation P = I2R, 
where 

A wattmeter and ammeter are therefore necessary for measuring the effective 
resistance of an ac circuit. 

2I 
PReff = 

Effective Resistance – Radiation Losses 

The radiation loss is the loss of energy in the form of electromagnetic waves during 
the transfer of energy in the from one element to another. This loss in energy requires 
that the input power be larger to establish the same current I, causing R to increases as 
determined by Eq. (19.31). At a frequency of 60Hz, the effects of radiation losses can 
be completely ignored. However, at radio frequencies, this is important effect and 
may in fact become the main effect in an electromagnetic device such as an antenna. 

ET 242 Circuit Analysis II – Power for AC Circuits Boylestad 16 

Figure 19.36 Demonstrating the skin effect on the effective 
resistance of a conductor. 

Effective Resistance – Skin Effect 
The explanation of skin effect requires the use of some basic concepts previously described. A 
magnetic field exist around every current-carrying conductor. Since the amount of charge flowing 
in ac circuits changes with time, the magnetic field surrounding the moving charge (current) also 
changes. Recall also that a wire placed in a changing magnetic field will have an induced voltage 
across its terminals as determined by Faraday’s law, e = N × (dΦ/dt). The higher the frequency of 
the changing flux as determined by an alternating current, the greater the induced voltage. 

Effective Resistance – Hysteresis and Eddy 
current losses 

As mentioned earlier, hysteresis and eddy current losses appear when a ferromagnetic material is 
placed in the region of a changing magnetic field. To describe eddy current losses in greater detail, 
we consider the effects of an alternating current passing through coil wrapped around a 
ferromagnetic core. As the alternating current passes through the coil, it develops a changing 
magnetic flux Φ linking both coil and the core that develops an induced voltage and geometric 
resistance of the core RC = ρ(l/A) cause currents to be developed within the core, icore = (eind/RC), 
called eddy currents. 

ET 242 Circuit Analysis II – Power for AC Circuits Boylestad 17 

The currents flow in circular paths, as shown in fig. 19.37, changing direction with the 
applied ac potential. The eddy current losses are determined by 

coreeddyeddy Rip 2= 

The eddy current loss is proportional to the square of 
the frequency times the square of magnetic field 
strength:     

peddy œ f  2B2 

Eddy current losses can be reduced if the core is 
constructed of thin, laminated sheets of ferromagnetic 
material insulated from one another and aligned 
parallel to the magnetic flux. 

Figure 19.37 Defining the eddy current 
losses of a ferromagnetic core. 

In terms of the frequency of the applied signal and the magnetic field strength produced, 
the hysteresis loss is proportional to the frequency to the 1st power times the magnetic 
field strength to the nth power: phys œ f  1Bn 

Where n can vary from 1.4 to 2.6, depending on the material under consideration. 
Hysteresis losses can be effectively reduced by the injection of small amounts of silicon 
into the magnetic core, constituting some 2% or 3% of the total composition of the core. 

ET 242 Circuit Analysis II – Power for AC Circuits Boylestad 18 

Homework 19: 2-6, 10-13, 16-18 

HW 19-10 An electrical system is rated 10 kVA, 200V at a leading power factor. 
a. Determine the impedance of the system in rectangular coordinates. 
b. Find the average power delivered to the system. 
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Resonance - Introduction 
The resonance circuit is a combination of R, L, and C 
elements having a frequency response characteristic 
similar to the one appearing in Fig. 20.1. Note in the 
figure that the response is a maximum for the frequency 
Fr, decreasing to the right and left of the frequency. In 
other words, for a particular range of frequencies, the 
response will be near or equal to the maximum. When 
the response is at or near the maximum, the circuit is 
said to be in a state of resonance. Figure 20.1 Resonance curve. 

Series Resonance – Series Resonance Circuit 
A resonant circuit must have an inductive and a capacitive element. A resistive 
element is always present due to the internal resistance (Rs), the internal resistance 
of the response curve (Rdesign). The basic configuration for the series resonant circuit 
appears in Fig. 20.2(a) with the resistive elements listed above. The “cleaner” 
appearance in Fig. 20.2(b) is a result of combining the series resistive elements into 
one total value. That is R = Rs + Rl + Rd 

ET 242 Circuit Analysis II – Series Resonance Boylestad 3 
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The total impedance of this network at any 
frequency is determined by 

ZT = R + jXL – jXC = R + j(XL – XC) 

The resonant conditions described in the 
introduction occurs when 

XL = XC (20.2) 

removing the reactive component from the 
total impedance equation. The total 
impedance at resonance is then 

ZTs = R 

representing the minimum value of ZT at any 
frequency. The subscript s is employed to 
indicate series resonant conditions. 

The resonant frequency can be 
determined in terms of the inductance 
and capacitance by examining the 
defining equation for resonance [Eq. 
(20.2)]: XL = XC 

Figure 20.2 Series resonant circuit. 
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The current through the circuit at resonance is 
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= 0 
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EI 

which is the maximum current for the circuit in Fig. 20.2 for an applied voltage E 
since ZT is a minimum value. Consider also that the input voltage and current are 
in phase at resonance. 
Since the current is the same through the capacitor and inductor, the voltage across 
each is equal in magnitude but 180° out of phase at resonance: 

°−∠=°−∠°∠= 

°∠=°∠°∠= 

90)90)(0( 
90)90)(0( 

CCL 

LLL 

IXXIV 
IXXIV 180° out 

of phase 

And, since XL = XC, the magnitude of VL equals VC at resonance; that is, 

VL = VC 

Fig. 20.3, a phasor diagram of the voltage and 
current, clearly indicates that the voltage across 
the resistor at resonance is the input voltage, 
and E, I, and VR are in phase at resonance. 

Boylestad 

Figure 20.2 
Phasor diagram 
for the series 
resonant circuit 
at resonance. 
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The average power to the resistor at resonance is 
equal to I2R, and the reactive power to the capacitor 
and inductor are I2XC and I2XC, respectively. The 
power triangle at resonance (Fig. 20.4) shows that the 
total apparent power is equal to the average power 
dissipated by the resistor since QL = QC. The power 
factor of the circuit at resonance is 

Fp = cosθ = P/S and F = 1ps Figure 20.4 Power triangle for the 
series resonant circuit at resonance. 

Series Resonance – Quality Factor (Q) 
The quality factor Q of a series resonant circuit is defined as the ratio of the reactive 
power of either the inductor or the capacitor to the average power of the resistor at 
resonance; that is, 

Qs = reactive power / average power 

The quality factor is also an indication of how much energy is placed in storage 
compared to that dissipated. The lower the level of dissipation for the same reactive powe 
the larger the Qs factor and the more concentrated and intense the region of resonance.
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Figure 20.6 Q1 versus frequency for a series of 
inductor of similar construction. 
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2 

Substituting for an inductive reactance in Eq.(20.8) 
at resonance gives us 

I 2 X X ω LL L sQ = and Q = = (20.9)s 2 sI R R R 
If the resistor R is just the resis tan ce of the coil(Rl ), 
we can speak of the Q of the coil, where 

X LQ = Q = coil l Rl 

Note in Fig.20.6 that for coils of the same type, Q1 

drops off more quickly for higher levels of inductance , 
If we substitute 

1ω = 2π f and then f = s s s 2π LC 
into Eq .(20 .9), we have 

ω s L 2πf s L 2π ⎛ 1 ⎞Q s = = = ⎟⎟⎜⎜ L
R R R ⎝ 2π LC ⎠ 

L ⎛ 1 ⎞ ⎛ L ⎞ L 1 L 
= ⎟⎟⎜⎜ = ⎜ ⎟ = ⎜ ⎟R ⎝ LC ⎠ ⎝ L ⎠ R LC R C 

providing Q s in terms of the circuit parameters . 
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equencies, X > X

Series Resonance – ZT Versus Frequency 
The total impedance of the series R − L − C circuit in Fig.20.2 at any 
frequency is determined by 

Z = R + jX − jX or Z = R + j(X − X ) 
The magnitude of the impedance ZT versus frequency is determined by 

Z = R2 + (X − X )2 

T L C T L C 

T L C 

The total-impedance-versus-frequency curve for the 
series resonant circuit in Fig. 20.2 can be found by 
applying the impedance-versus-frequency curve for 
each element of the equation just derived, written in 
the following form: 

Where ZT(f) “means” the total impedance as a function 
of frequency. For the frequency range of interest, we 
assume that the resistance R does not change with 
frequency, resulting in the plot in Fig.20.8. 

22 )]()([)]([)( fXfXfRfZ CLT −+= 

Figure 20.8 Resistance versus frequency. 
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The curve for the inductance, as determined by the 
reactance equation, is a straight line intersecting the origin 
with a slope equal to the inductance of the coil. The 
mathematical expression for any straight line in a two-
dimensional plane is given by 

y = mx + b 

Thus, for the coil, 

XL = 2π fL + 0 = (2πL)(f) + 0 

y =  m ∙ x + b 

(where 2πfL is the slope), producing the results shown in 
Fig. 20.9. 

For the capacitor, 

which becomes yx = k, the equation for a hyperbola, where 

The hyperbolic curve for XC(f) is plotted in Fig.20.10. In 
particular, note its very large magnitude at low frequencies 
and its rapid drop-off as the frequency increases. 

Figure 20.9 Inductive reactance versus frequency. 

Figure 20.10 Capacitive reactance versus 
frequency. 

πC
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X)y(variable C 
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1 
==

 – 

If we place Figs.20.9 and 20.10 on the same set of axes, we 
obtain the curves in Fig.20.11. The condition of resonance 
is now clearly defined by the point of intersection, where XL 
= XC. For frequency less than Fs, it is also quite clear that 
the network is primarily capacitive (XC > XL). For 
frequencies above the resonant condition, XL > XC, and 
network is inductive. 

Applying 

to the curves in Fig.20.11, where X(f) = XL(f) – XC(f), we 
obtain the curve for ZT(f) as shown in Fig.20.12.The 
minimum impedance occurs at the resonant frequency and 
is equal to the resistance R.  

The phase angle associated with the total impedance is 

At low fr C L, and θ approaches –90° 
(capacitive), as shown in Fig.20.13, whereas at high 
frequencies, XL > XC, and θ approaches 90°. In general, 
therefore, for a series resonant circuit: 

R 
XX CL )(

tan 1 − 
= −θ 

phaseinareIandEcapacitivenetworkff 
IleadsEcapacitivenetworkff 
EleadsIcapacitivenetworkff 

s 

s 

s 

;: 
;: 
;: 

= 

> 

< 

22 

22 

)]([)]([ 

)]()([)]([)( 

fXfR 

fXfXfRfZ CLT 

+= 

−+= Figure 20.11 Placing the frequency response of 
the inductive and capacitive reactance of a series 
R-L-C circuit on the same set of axes. 

Figure 20.12 ZT versus frequency for the series 
resonant circuit. 

Figure 20.13 Phase plot for the series resonant circuit. 

If we now plot the magnitude of the current I = E/ZT versus frequency for a fixed 
applied voltage E, we obtain the curve shown in Fig. 20.14, which rises from zero 
to a maximum value of E/R and then drops toward to zero at a slower rate than it 
rose to its peak value. 

ET 242 Circuit Analysis II – Power for AC Circuits Boylestad 11 

Series Resonance – Selectivity 

There is a definite range of frequencies at which 
the current is near its maximum value and the 
impedance is at a minimum. Those frequencies 
corresponding to 0.707 of maximum current are 
called the band frequencies, cutoff frequencies, 
half-power frequencies, or corner frequencies. 
They are indicated by f1 and f2 in Fig.20.14. The 
range of frequencies between the two is referred 
to as bandwidth (BW) of the resonant circuit. 

Figure 20.14 I versus frequency for the series 
resonant circuit. 

Half-power frequencies are those frequencies at which the power delivered is one-
half that delivered at the resonant frequency; that is 

RIPwherePPHPF 
2 
maxmaxmax2 

1 
== 
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Boylestad 3

Since the resonant circuit is adjusted to select a band of 
frequencies, the curve in Fig.20.14 is called the selective 
curve. The term is derived from the fact that on must be 
selective in choosing the frequency to ensure that is in the 
bandwidth. The smaller bandwidth, the higher the 
selectivity. The shape of the curve, as shown in Fig. 
20.15, depends on each element of the series R-L-C 
circuit. If resistance is made smaller with a fixed 
inductance and capacitance, the bandwidth decreases and 
the selectivity increases. 

The bandwidth (BW) is 

It can be shown through mathematical manipulations of 
the pertinent equations that the resonant frequency is 
related to the geometric mean of the band frequencies; 
that is 

21 fff s = 

s 

s 

Q 
f

BW = 

Figure 20.15 Effect of R, L, and C on the 
selectivity curve for the series resonant 
circuit. 
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Series Resonance – VR, VL, and VC 

Plotting the magnitude (effective value) of the voltage VR, VL, and VC and the current I versus 
frequency for the series resonant circuit on the same set of axes, we obtain the curves shown in 
Fig.20.17. Note that the VR curve has the same shape as the I curve and a peak value equal to the 
magnitude of the input voltage E. The VC curve build up slowly at first from a value equal to the 
input voltage since the reactance of the capacitor is infinite (open circuit) at zero frequency and 
reactance of the inductor is zero (short circuit) at this frequency. 

For the condition Qs ≥ 10, the curves in Fig.20.17 
appear as shown in Fig.20.18. Note that they each 
peak at the resonant frequency and have a similar 
shape. 

In review, 

1. VC and VL are at their maximum values at or near 
resonance. (depending on Qs). 

2. At very low frequencies, VC is very close to the 
source voltage and VL is very close to zero volt, 
whereas at very high frequencies, VL approaches the 
source voltage and VC approaches zero volts. 

3. Both VR and I peak at the resonant frequency and 
have the same shape. – 

Figure 20.17 VR, VL, VC, and I versus 
frequency for a series resonant circuit. 

Figure 20.18 VR, VL, VC, and I for a series resonant circuit where Qs ≥ 10. 

Ex. 20-1 
a. For the series resonant circuit in Fig.20.19, find I, VR, VL, and VC at resonance. 
b. What is the Qs of the circuit? 
c. If the resonant frequency is 5000Hz, find the bandwidth. 
d. What is the power dissipated in the circuit at the half-power frequencies? 
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Figure 20.19 Example 20.1. 

Ex. 20-2 The bandwidth of a series resonant circuit is 400 Hz. 
a. If the resonant frequency is 4000 Hz, what is the value of Qs? 
b. If R = 10Ω, what is the value of XL at resonance? 
c. Find the inductance L and capacitance C of the circuit. 

f s f s 4000Hz a. BW = or Qs = = = 10 
Qs BW 400Hz 

X Lb. Q = or X = Q R = (10)(10Ω) = 100Ωs L sR 
X L 100Ω c. X L = 2πf s L or L = = = 3.98 Hz

2πf s 2π (4000Hz) 
1 1 1X C = or C = = = 397.89 nF

2πf C 2πf X 2π (4000Hz)(100Ω)s s C 

Ex. 20-3 A series R-L-C circuit has a series resonant frequency of 12,000 Hz. 
a. If R = 5Ω, and if XL at resonance is 300Ω, find the bandwidth. 
c. Find the cutoff frequencies. X L 300Ω f s 12,000Hz a. Q = = = 60 and BW = = = 200Hzs R 5Ω Qs 60 

b. Since Qs ≥ 10, the bandwidth is bi sec ted by f s . Therefore, 
BWf 2 = f s + = 12,000Hz + 100Hz = 12,100Hz 

2 
BWand f = f − = 12,000Hz −100Hz = 11,900Hz1 s 2ET 242 Circuit Analysis II – Series Resonance ET 242 Circuit Analysis II – Series Resonance Boylestad 14 
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http:Fig.20.18
http:Fig.20.17
http:Fig.20.17
http:Fig.20.19


  

 

  

 

 

  

   

   
   

    

    

 

 
 

 

 
 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

Ex. 20-4 
a. Determine the Qs and bandwidth for the response curve in Fig.20.20. 
b. For C = 101.5 nF, determine L and R for the series resonant circuit. 
c. Determine the applied voltage. 

Figure 20.20 Example 20.4. 

a. The resonant frequency is 2800 Hz. At 0.707 times the peak value , 
f 2800 HzBW = 200Hz and Qs = s = = 14

BW 200Hz 
1 1 1b. f s = or L = = = 31.83mH2 2 2 22π LC 4π f s C 4π (2.8kHz ) (101.5nF ) 

X L X L 2π (2800 Hz )(31.832mH )Qs = or R = = = 40 Ω 
R Qs 14 

E c. I = or E = I R = (200mA)(40Ω) = 8 Vmax maxR 
ET 242 Circuit Analysis II – Series Resonance Boylestad 16 

HW 20-11 A series resonant circuit is to resonate at ωs = 2π × 106 rad/s and draw 20W 
from a 120 V source at resonance. If the fractional bandwidth is 0.16. 
a. Determine the resonant frequency in hertz. 
b. Calculate the bandwidth in hertz. 
c. Determine the values of R, L, and C. 
d. Find the resistance of the coil if Ql = 80. Homework 20: 1-12 

Ex. 20-5 A series R-L-C circuit is designed to resonate at ωs = 105 rad/s, have a 
bandwidth of 0.15ωs, and draw 16 W from a 120 V source at resonance. 
a. Determine the value of R. 
b. Find bandwidth in hertz. 
c. Find the nameplate values of L and C. 
d. Determine the Qs of the circuit. 
e. Determine the fractional bandwidth. 
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Parallel Resonance Circuit - Introduction 

The basic format of the series resonant circuit 
is a series R-L-C combination in series with 
an applied voltage source. The parallel 
resonant circuit has the basic configuration in 
Fig. 20.21, a parallel R-L-C combination in 
parallel with an applied current source. 

ET 242 Circuit Analysis II – Parallel Resonance Boylestad 3 

If the practical equivalent in Fig. 20.22 had 
the format in Fig. 20.21, the analysis would be 
as direct and lucid as that experience for series 
resonance. However, in the practical world, 
the internal resistance of the coil must be 
placed in series with the inductor, as shown in 
Fig.20.22. 

Figure 20.22 Practical parallel L-C network. 

Figure 20.21 Ideal parallel resonant network. 
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The first effort is to find a parallel 
network equivalent for the series R-L 
branch in Fig.20.22 using the technique 
in earlier section. That is 

Figure 20.23 Equivalent parallel network for a series R-L combination. 
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Figure 20.25 Substituting R = Rs//Rp for the network in Fig. 20.24. 
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Where fp is the resonant frequency of 
a parallel resonant circuit (for Fp = 1) 
and fs is the resonant frequency as 
determined by XL = XC for series 
resonance. Note that unlike a series 
resonant circuit, the resonant 
frequency fp is a function of 
resistance (in this case Rl). 

Parallel Resonant Circuit – Maximum Impedance, fm 
At f = fp the input impedance of a parallel resonant 
circuit will be near its maximum value but not quite its 
maximum value due to the frequency dependence of Rp. 
The frequency at which impedance occurs is defined by 
fm and is slightly more than fp, as demonstrated in Fig. 
20.26. Figure 20.26 ZT versus frequency 

for the parallel resonant circuit. 

Parallel Resonant Circuit – Selectivity Curve 

ET 242 Circuit Analysis II – Parallel Resonance Boy 

The frequency fm is determined by differentiating the general equation for ZT with respect to 
frequency and then determining the frequency at which the resulting equation is equal to zero. The 
resulting equation, however, is the following: 

Note the similarities with Eq. (20.31). Since square root factor of Eq. (20.32) is always more than 
the similar factor of Eq. (20.31), fm is always closer to fs and more than fp. In general, 

fs > fm > fp 

Once fm is determined, the network in Fig. 20.25 can be used to determine the magnitude and 
phase angle of the total impedance at the resonance condition simply by substituting f = fm and 
performing the required calculations. That is 

ZTm = R // XLp // XC f =f m 

⎟⎟ 
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Since the current I of the current source is constant for 
any value of ZT or frequency, the voltage across the 
parallel circuit will have the same shape as the total 
impedance ZT, as shown in Fig. 20.27. For parallel circuit, 
the resonance curve of interest in VC derives from 
electronic considerations that often place the capacitor at 
the input to another stage of a network. Figure 20.27 Defining the shape of the Vp(f) curve. 

Since the voltage across parallel elements is the same, 

VC = Vp = IZT 

The resonant value of VC is therefore determined by the value of ZTm and magnitude of the current 
source I. The quality factor of the parallel resonant circuit continues to be determined as 
following; resonanceatXX 
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make the following approximation: 

In general, the bandwidth is still related to th nant frequency and the quality factor by 
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factor by 
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Effect of QL ≥ 10 – Resonant Frequency, fp
(Unity Power Factor) 

The effect of Rl, L, and C on the shape of the 
parallel resonance curve, as shown in Fig. 
20.28 for the input impedance, is quite 
similar to their effect on the series resonance 
curve. Whether or not Rl is zero, the parallel 
resonant circuit frequently appears in a 
network schematic as shown in Fig. 20.28. 
At resonance, an increase in Rl or decrease in 
the ratio L/R results in a decrease in the 
resonant impedance, with a corresponding 
increase in the current. 

1010 ≥≥ ≅≅ 
llp QCLQLL XXandXX 

Figure 20.28 Effect of R1, L, and, C on the parallel resonance curve. 

ET 242 Circuit Analysis II – Parallel Resonance Boylestad 8 

Parallel Resonant Circuit – Effect of QL ≥ 10 
The analysis of parallel resonant circuits is significantly more complex than encountered for 
series circuits. However, this is not the case since, for the majority of parallel resonant circuits, 
the quality factor of the coil Ql is sufficiently large to permit a number of approximations that 
simplify the required analysis. 

Effect of QL ≥ 10 – Inductive Resistance, XLp 

1 1f = f 1 − and f ≅ f = p s 2 Q l ≥ 10 p s Q l ≥ 10Q l 2π LC 

Effect of QL ≥ 10 – Resonant Frequency, fm 
(Maximum VC) 
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Figure 20.31 Establishing the relationship 
between IC and IL and current IT. 
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A portion of Fig. 20.30 is reproduced in Fig. 20.31, with IT defined as shown 

Ex. 20-6 Given the parallel network in Fig. 20.32 composed of “ideal” elements: 
a. Determine the resonant frequency fp. 
b. Find the total impedance at resonance 
c. Calculate the quality factor, bandwidth, and cutoff frequencies f1 and f2 of the system. 
d. Find the voltage VC at resonance. 
e. Determine the currents I and I at resonance. 
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ET 242 Circuit Analysis II – Parallel Resonance 

Ex. 20-7 For the parallel resonant circuit in Fig. 20.33 with Rs = ∞ Ω: 
a. Determine fp, fm, and fp, and compare their levels. 
b. Calculate the maximum impedance and the magnitude of the voltage VC at fm. 
c. Determine the quality factor Qp. 
d. Calculate the bandwidth. 
e. Compare the above results with those obtained using the equations associated with   Ql 
≥ 10. 
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Ex. 20-8 For the network in Fig. 20.34 with fp provided: 
a. Determine Ql.  b. Determine  Rp. c. Calculate ZTp . d. Find C at resonance. 
e. Find Qp. f. Calculate the BW and cutoff frequencies. 
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Ex. 20-10 Repeat Example 20.9, but ignore the effects of Rs, and compare results. 
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Homework 20: 13-21 

HW 20-13 For the “ideal” parallel resonant circuit in Fig. 20.52: 
a. Determine the resonant frequency (fp). 
b. Find the voltage VC at resonance. 
c. Determine the currents IL and IC 

at resonance. 
d. Find Qp. 

Figure 20.52 Problem 13. 
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Transformers - Introduction 
Mutual inductance is a phenomenon basic to the operation of the transformer, an 
electrical device used today in almost every field of electrical engineering. This device 
plays an integral part in power distribution systems and can be found in many electronic 
circuits and measuring instruments. In this module, we discuss three of the basic 
applications of a transformer: to build up or step down the voltage or current, to act as 
an impedance matching device, and to isolate one portion of a circuit from another. 

Transformers – Mutual Inductance 
A transformer is constructed of two coils 
placed so that the changing flux developed 
by one links the other, as shown in Fig. 22.1. 
This results in an induced voltage across 
each coil. To distinguish between the coils, 
we apply the transformer convention that 

the coil to which the source is applied is 
called the primary, and the coil to which 
the load is applied is called the secondary.
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Figure 22.1 Defining the components of the transformer. 
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Figure 22.3 
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For the primary of the transformer in Fig.22.1, an application of Faraday’s law result in 

revealing that the voltage induced across the primary is directly related to the number of turns in 
the primary and the rate of change of magnetic flux linking the primary coil. 

revealing that the induced voltage across the primary is also directly related to the self-
inductance of the primary and rate of change of current through the primary winding. The 
magnitude of es, the voltage induced across the secondary, is determined by 

Where Ns is the number of turns in the secondary winding and Φm is the portion of primary flux 
Φp Φthat links the secondary, then m = Φp 

and 

The coefficient of coupling (k) between two coil is determined by 

Since the maximum level of Φm is Φp, the coefficient of coupling between two coils can never 
be greater than 1. 

The coefficient of coupling between various coils is indicated in 
Fig. 22.2. In Fig. 22.2(a), the ferromagnetic steel core ensures 
that most of the flux linking the primary also links the 
secondary, establishing a coupling coefficient very close to 1. In 
Fig. 22.2(b), the fact that both coils are overlapping results in 
the coil linking the other coil, with the result that the coefficient 
of coupling is again very close to 1. In Fig. 22.2(c), the absence 
of a ferromagnetic core results in low levels of flux linkage 
between the coils. For the 
secondary, we have 

The mutual inductance between the two coils in Fig. 22.1 is 
determined by 

Note in the above equations that the symbol for mutual 
inductance is the capital letter M and that its unit of 
measurement, like that of self-inductance, is the henry. 

mutual inductance between two coils is proportional to the 
instantaneous change in flux linking one coil due to an 
instantaneous change in current through the other coil. 
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Figure 22.2 Windings having different 
coefficients of coupling. 
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In terms of the inductance of each coil and the coefficient of coupling, the mutual inductance is 
determined by 

,(henriesLM = Lk )Hsp 

The greater the coefficient of coupling, or the greater the inductance of either coil, the higher the 
mutual inductance between the coils. The secondary voltage es can also be found in terms of the 
mutual inductance if we rewrite Eq. (22.3) as 

and, since M = Ns(dΦ /dip), it can also be written m 
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s == 

Ex. 22-1 For the transformer in Fig. 22.3: 
a. Find the mutual inductance M. 
b. Find the induced voltage ep if the flux p changes at the rate of 450 mWb/s. Φ 

Example 22.1. 

c. Find the induced voltage es for the same rate of change indicated in part (b). 
d. Find the induced voltages e and e if the current i changes at the rate of 0.2 A/ms. p s p 

dφ pa. M = k Lp Ls = 0.6 (200mH )(800mH ) c. es = kN s = (0.6)(100)(450mWb / s) = 27V
dt 

= 0.6 16 ×10−2 = 240 mH dipd. ep = Lp = (200mH )(0.2A / ms) = 40V
dφ p dt

b. ep = N p = (50)(450mWb / s) = 22.5V didt pes = M = (240mH )(200A / s) = 48V 
dt 
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Figure 22.4 Iron-core transformer.

 – y 7 

Transformers – The Iron-Core Transformer 
An iron-core transformer under loaded conditions is shown in Fig. 22.4. The iron core will 
serve to increase the coefficient of coupling between the coils by increasing the mutual flux Φm. 

The effective value of ep is Ep = 4.44fNpΦm 
which is an equation for the rms value of the 
voltage across the primary coil in terms of the 
frequency of the input current or voltage, the 
number turns of the primary, and the maximum 
value of the magnetic flux linking the primary. 

The flux linking the secondary is 
Ep = 4.44fNpΦm 

Dividing equations, we obtain 

Revealing an important relationship for 
transformers: 

The ratio of the magnitudes of the induced 
voltages is the same as the ratio of the 
corresponding turns. 
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Ex. 22-2 For the iron-core transformer in Fig. 22.5: 
a. Find the maximum flux Φm. 
b. Find the secondary turn Ns. 

Figure 22.5 Example 22.2. 

The induced voltage across the secondary of the transformer in Fig. 22.4 establish a current is 
through the load ZL and the secondary windings. This current and the turns Ns develop an mmf Nsis 
that are not present under no-load conditions since is = 0 and Nsis = 0. 

Since the instantaneous values of ip and is are related by the turns ratio, the phasor quantities Ip
and Is are also related by the same ratio: 

The primary and secondary currents of a transformer are therefore related by the inverse ratios 
of the turns. 
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Transformers – Reflected Impedance and Power 
In previous section we found that 

Vg N p I p N s 1 
= = a and = = 

V N I N aL s s p 

Dividing the first by the second, we have 
Vg /VL a Vg /I p 2 Vg 2 VL= or = a and = a
I /I 1/a VL /I I Ip s s p s 

However, since That is, the impedance of the primary circuit of 
V V an ideal transformer is the transformation ratio 

Z = g and Z = L 
p L squared times the impedance of the load. Note I p I s that if the load is capacitive or inductive, the 

then Z = ap 
2 Z L reflected impedance is also capacitive or 

inductive. For the ideal iron-core transformer, 

)( conditionidealPPand 

IEIEor
I 
I 

a
E 
E 

outin 

sspp 
p 

s 

s 

p 

= 

=== 

ET 242 Circuit Analysis II – Transformers Boylestad 8 ET 242 Circuit Analysis II – Transformers Boylestad 9 

Ex. 22-3 For the iron-core transformer in Fig. 22.6: 
a. Find the magnitude of the current in the primary and the impressed voltage across  

the primary. 
b. Find the input resistance of the transformer. 
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Figure 22.6 Example 22.3. 

HW 12-12 
a. If Np = 400 V, Vs = 1200, and Vg = 100 V, 
find the magnitude of Ip for the iron-core  
transformer in Fig. 22.58 if ZL = 9 Ω +j12 Ω. 
b.  Find the magnitude of the voltage VL and 
the current IL for the conditions of part (a). 

Figure 22.12 Problem 12. 
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Homework 22: 1-3,4,8,12 
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