NEW YORK CITY COLLEGE OF TECHNOLOGY The City University of New York

DEPARTMENT:	Electrical and Telecommunications			
	Engineering Technology			
SUBJECT CODE	EET4112 Applied Mechatronics			
AND TITLE:				
COURSE DESCRIPTION				
	The course introduces multidisciplinary concept of mechanical, electrical, control system and computer software that is required for designing, analyzing and controlling a system. Integration of sensors, actuators, power electronics and control algorithms are emphasized. Application of various NI modules (AI and AO) are implemented for data acquisition			
PREREQUISITE:	UISITE: EET 3212			
TEXTBOOK:	Mechatronics: Electronic control systems in mechanical and electrical engineering. (7th Edition, 2011) By Bolton, W. Analysis			
COURSE OBJECTIVES/ COURSE OUTCOMES:	 Upon completion of this course the student will be able to: 1. Acquire the theoretical knowledge of different kinds of sensors. (ABET Criteria 3.1, 3.2). 2. Acquire the theoretical knowledge of different kinds of actuators: such as DC motors, proportional valves, stepper motor and relays (ABET Criteria 3.1) 			
TOPICS:	 3. Acquire knowledge about microcontrollers and ICs such as operational amplifiers, A/D and D/A converters, counters, timer etc. (ABET Criteria 3.1). 4. Acquire knowledge in writing LabView Code (ABET Criteria PC a). Topics include dc, pulse, and ac analysis of first order and second order systems when solving the transient and steady state responses of a given network. Graphical plotting, analysis of findings are discussed. 			
CLASS HOURS:	2			
LAB HOURS:	2			
CREDITS:	3			
Prepared by:	Professor Muhammad Ali Ummy Fall 2014			
Revised by:	(Spring 2022)			
Course Coordinator:	Professor Muhammad Ali Ummy			
	E-mail: maummy@citytech.cuny.edu			

EVALUATION:

Exam #1		20%					
Exam #2 2		20%					
Lab/Labview code 20%		20%	.0%				
Final Exam 40%		40%					
T II C	1	N . 10 1 D					
Letter Grade <u>Numerical Grade Rang</u>		Numerical Grade Rang	ges Quality				
A		93-100	4.0				
A-		90-92.9	3.7				
B+ 87-89.9		8/-89.9	3.3				
В		83-86.9	3.0				
B-		80.82.9	2.7				
C+		77-79.9	2.3				
C		/0-/6.9	2.0				
D		60-69.9	1.0				
F		59.9 and below	0.0				
	Asses	sment					
The following assessment techniques are			Assessment				
correlated	to the cours	se objectives as	The student will be able to:				
follows: In addition each assessment		ach assessment					
technique	incorporate	s one or more of the	Students focus on the designing aspect of				
ABET Cri	teria 2 outco	omes (3.1. 3.2. PC a).	circuits that go in conjunction with these				
Course Ob	viectives		sensors. Using the Data Acquisition Board				
	<u></u>		(DAQ) students will read the data from the				
1.	Acquire	the theoretical	sensors and display it on the monitor.				
	knowledge	of different kinds of	1				
	sensors si	ich as: strain gages.	Students will show skills in calculating and				
	thermocou	nles. transducers.	design circuits or use controllers to do				
	proximity	sensors load cell.	simple tasks. They will be asked to write				
	tachometer	r motion detectors	software that can communicate with these				
	taenometer		actuators.				
2.	Acquire	the theoretical					
	knowledge	e of different kinds of	Students will be asked to use different				
	actuators:	such as DC motors,	sensors or actuators and ICs to read data by				
	proportion	al valves, stepper	using microcontrollers/NI Modules.				
	motor and	relavs.	Design a system to measure and control				
		5	various types of actuators devices.				
3.	Acquire	knowledge about					
	microconti	collers and ICs such	Students will design circuits that will				
	as operati	onal amplifiers, A/D	include sensors, actuators, and write				
	and D/A	converters, counters,	LabView codes to perform certain task				
	timer etc.	. ,					
4.	Acquire k	nowledge in writing					
	LabView (Code					

<u>Week</u>	Lecture Topic		<u>Laboratory</u>
1 & 2	 Introducing Mechatronics Sensors and Transducers Analog position measurement Digital position measurement Temperature sensors. Strain, stress, force measurement 	Chapter 2: 2.3, 2.4, 2.5, 2.6, 2.9, 2.10	Lab 1. Lab 2
3-4	 Signal Conditioning The operational amplifier Filtering Wheatstone bridge Pulse modulation 	Chapter 3: 3.2, 3.4,3.5,3.6	Lab 3 Lab 4
5-6	 Digital Signals Analog and digital signal Digital-to-analog (ADC) and Analog-to-digital (DAC) converter Data acquisition 	Chapter 4 4.2, 4.3, 4.5	Lab 5 Lab 6
7&8	 Mechanical Actuation system: Type of system Kinematic chains Gears 	Chapter 8 8.1, 8.2, 8.3, 8.5	Lab 7 Lab 8
9 & 10	Electrical Actuation system Electrical system Solid-state-switches Solenoids DC Motors Stepper Motor 	Chapter 9 9.1, 9.3, 9.4, 9.5, 9.7 9.8	Lab 9 Lab 10
11 & 14	System Transfer Function • Transfer Function • First order System • Second Order System • System with feedback	Chapter 13 13.1,13.2,13.3, 13.5 and 13.6	Lab 11 Lab 12

Week	<u>Lecture Topic</u>	<u>Laboratory</u>
	• Effect of pole location on transient response	
15	Final Exam	

Contribution of course to meeting the requirements of ETAC/ABET Criterion 5:

EET 4112 meets criterion 5 by providing students with a strong foundation of analytical and theoretical knowledge of different types of sensors, actuators and analog and digital NI modules. The students acquire knowledge in writing LabView Code to control various types of actuators devices. Academic benchmarks, course outcomes, and assessment requirements have been established to determine students' ability of designing a circuit, breadboarding, and performing various tests and analyses. By fostering critical thinking, communications, and teamwork, the students develop the skills needed to solve problems in a laboratory environment, which later will serve them in their work place.

New York City College of Technology Policy on Academic Integrity

Students and all others who work with information, ideas, texts, images, music, inventions, and other intellectual property owe their audience and sources accuracy and honesty in using, crediting, and citing sources. As a community of intellectual and professional workers, the College recognizes its responsibility for providing instruction in information literacy and academic integrity, offering models of good practice, and responding vigilantly and appropriately to infractions of academic integrity. Accordingly, academic dishonesty is prohibited in The City University of New York and at New York City College of Technology and is punishable by penalties, including failing grades, suspension, and expulsion. The complete text of the College policy on Academic Integrity may be found in the catalog.