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1. Evaluate the following definite integrals:
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2. Evaluate the following indefinite integrals:
a. Ixz In(x)dx b. sze"‘ dx c. Ixcos(3x)dx

3. Find the area of the region enclosed by the graphs of:
a. y=3—x" and y=-2x b.y=x"-2xand y=x+4

4. Find the volume of the solid obtained by rotating the region bounded by the graphs of:
a. y=x"-9, y=0 about the x-axis. b. y=16—x, y=3x+12, x=—1 about the x-axis.
c. y=x>+2,y=-x*+10, x >0 about the y-axis.

5. Evaluate the following indefinite integrals:
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6. Evaluate the following indefinite integrals:
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7. Evaluate the improper integral:
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8. Decide if the following series converges or not. Justify your answer using an appropriate test:
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9. Determine whether the series is absolutely or conditionally convergent or divergent:
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10. Find the radius and the interval of convergence of the following power series:
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11. Find the Taylor polynomial of degree 2 for the given function, centered at the given number a:

a. f(x)=e™ata=-1. b. f(x)=cos(5x) at a=2r.

12. Find the Taylor polynomial of degree 3 for the given function, centered at the given number a:
i V4
a. f(x)=1+e"ata=-1 b. f(x)=sin(x) ata:E
Answers:
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(1a). (b). V10 —3 (1c). ; (22/3 - 1)
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a). xTn(x) - % +C  (@2b). —(x*+2x+2)e+C  (20). %xsin(3x) + écos(3x) +C
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(3a). The area of the region between the two curves is:

Area = j.(3—x2 —(—2x))dx = %

(3b). The area of the region between the two curves is:

Area = ].(x+ 4 —(x2 —2x))dx = %
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(4a). Approximate the volume of the solid by vertical
disks with radius y = x> — 9 between x=-3 and x =3 ;

gives the volume is V = f m(x? — 9)2 dx = 222
(4b). Using a washer of outer radius R, =16—x and
inner radius R, =3x+12 at x, gives the volume:

1
V= 7rj((16—x)2 —(Bx+12)%)dx _% where the

upper limit 1 is obtained from 16 —x=3x+12=x=1.

(4c). 16m
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(7a). % (7b). The integral does not converge (7¢). The integral does not converge
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divergence.
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(8b). This is a geometric series, with common ration r = 1/10 <1, so it converges to 5/9:
i 5 a 5/10 5/10 5
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(8¢). l n— o o = 1{1_)12 o = 10 L < 1 50 the series converges by the ratio test.
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8e). llm = lim =% = lim —2 = - < 1 so the series converges by the nth root test.
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(9a). Conditionally convergent: The series converges by the alternating series test since
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= 0 but not absolutely since Y5 |(—1)" 7n+2| = Yo

diverges by comparing it with the harmonic series Y,;—; = which diverges, using the limit comparison
10n _ 10
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(9b). Absolutely convergent: Y54

= Y=t # a convergent p-series with p=5/2 > 1.
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(9¢). Absolutely convergent: Y.o—o|(=1)"57"| = Y, 57" is a convergent geometric series with
common ratior = 1/5 < 1.
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divergence.

(10a). The power series converges when |x —1| < 1 by the ratio test, which gives a radius of
convergence 1 and interval of convergence centered at 1. The series diverges at x = 2 (harmonic series)
but converges at x = 0 (alternate harmonic series), so the interval of convergence is 0 <x < 2.

(10b). The power series converges when |x —1| < 1 by the ratio test, which gives a radius of
convergence 1 and interval of convergence centered at 1. The series diverges at x = 0 (harmonic series)
but converges at x = 2 (alternate harmonic series), so the interval of convergence is 0 <x < 2.

(10c). The power series converges when |x + 1| < 5 by the ratio test, which gives a radius of
convergence 5 and interval of convergence centered at — 1. The series diverges at x = 4 (harmonic
series) but converges at x =—6 (alternate harmonic series), so the interval of convergence is—6 < x < 4.

(10d). The power series converges when |x + 1| < 5 by the ratio test, which gives a radius of
convergence 5 and interval of convergence centered at —1. The series diverges at x =—6 (harmonic
series) but converges at x = 4 (alternate harmonic series), so the interval of convergence is—6 < x <4.
(11a). po(x) = e? — 2e?(x + 1) + 2e%(x + 1)?
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(11b). po(x) =1 — 5 (x— 2m)
(122). ps(x) =1+e—e(x+1) + g(x+ 1)% — % (x +1)3

=1+

12b). p3(x) =1 — = (x — 5)2



