1. Find $P(X < 3 \mid X > 1)$ if:
 a. X is a Poisson distribution with $\lambda = 1$.
 b. X is a normal distribution with $\mu = 1$ and $\sigma^2 = 4$.

2. Let Y_j be the price of a stock on the j^{th} day and $Y_j - Y_{j-1} = X_j$ be the difference in stock prices between consecutive days. Assume for $j \geq 1$, the X_j's are i.i.d. random variables with mean $\mu = 0$ and variance $\sigma^2 = 256$.
 a. Show that $\sum_{j=1}^{365} X_j = \sum_{j=1}^{365} (Y_j - Y_{j-1}) = Y_{365} - Y_1$.
 b. Find the probability that the price of the stock will be more than 100 in 365 days if it is 75 now.

3. If two distinct numbers are chosen from the set $\{1, 2, 3, 4, 5, 6\}$ randomly, and without replacement. Find the probability density function and expectation of the absolute value of the difference of the two numbers.

4. The moment generating function of a distribution is given by $m(t) = \left(e^{t/5} + 4/5 \right)^{25}$. Identify the distribution and find the value of its mean, variance and $P(X \geq 1)$.

5. Let X and Y be independent random variables with $E(X) = \mu_1$, $V(X) = \sigma_1^2$, $E(Y) = \mu_2$ and $V(Y) = \sigma_2^2$, where μ_1, μ_2, σ_1^2 and σ_2^2 are positive constants that are less than one. Evaluate the following and give your answers in terms of μ_1, μ_2, σ_1^2 and σ_2^2.
 i. $E(X + 2Y)$
 ii. $V(X + 2Y)$
 iii. $E(XY)$
 iv. $V(XY)$

6. If a pair of fair dice is rolled, what is the probability that a sum of 3 is rolled before a sum of 7 is rolled?

7. $f(x)$ is a probability density function with $f(x) = \begin{cases} \frac{c}{x^3} & \text{for } (1, \infty) \\ 0 & \text{elsewhere} \end{cases}$.
 Find the value of c and evaluate: i. $P\left(\frac{1}{2} < x < 2\right)$;
 ii. $P\left(-\frac{1}{2} \leq x \leq \frac{1}{2}\right)$
8. X is a Poisson distribution with mean λ. If $P(X = 2) = \frac{\lambda^2}{4}$. Find λ and the $P(X \geq 2)$.

9. In an experiment, probes land at random in the interval $(0,1)$ on the x–axis.
 a. What is the probability that a probe lands in the interval $(3/4,1)$?
 b. If three probes operate independently and lands, what is the probability that exactly two probes land in the interval $(3/4,1)$?

10. If A and B are independent events, show that
 a. A and \bar{B} are also independent events.
 b. \bar{A} and B are also independent events.

Solutions to the Sample MA 572 Final Examination Spring 2005

1. a. $P(X < 3 \mid X > 1) = \frac{1}{2(e-2)}$
 b. $P(X < 3 \mid X > 1) = 0.683$

2. a. $\sum_{j=1}^{365} (Y_j - Y_{j-1}) = (Y_1 - Y_0) + (Y_2 - Y_1) + \ldots + (Y_{364} - Y_{365}) + (Y_{365} - Y_0) = Y_{365} - Y_0$,
 this sum telescopes.
 b. $P(\sum_{j=1}^{365} X_j > 25) \approx P\left(z > \frac{25}{16\sqrt{365}}\right) = P(z > 0.0817) = 0.47$ or 47%.

3. Let X be the absolute value of the difference. $P(X = i) = \frac{6-i}{15}$, $i = 1, 2, 3, 4, 5$

 $E(X) = \sum_{i=1}^{5} i \left(\frac{6-i}{15}\right) = \frac{7}{3}$

4. This is a Binomial distribution with $p = \frac{1}{5}, q = \frac{4}{5}$ and $n = 25$. $\mu = np = 5$,

 $\sigma^2 = npq = 4$. $P(X \geq 1) = 1 - \left(\frac{4}{5}\right)^{25} \approx 0.996$

5. a. $\mu_1 + 2\mu_2$
 b. $\sigma_1^2 + 4\sigma_2^2$
 c. $\mu_1 \mu_2$
 d. $\sigma_1^2 \sigma_2^2 + \sigma_1^2 \mu_2^2 + \mu_1^2 \sigma_2^2$

6. $\frac{1}{4}$
7. \(c = 2 \)
 i. \(3/4 \) ii. 0

8. \(\lambda = \ln 2 \) and \(P(X \geq 2) = \ln \sqrt{e/2} \)

9. a. 1/4 b. 9/64

10. a. Use the disjoint union \(A = (A \cap \overline{B}) \cup (A \cap B) \)
 b. Use the disjoint union \(\overline{B} = (A \cap \overline{B}) \cup (\overline{A} \cap \overline{B}) \) and the result from part a.