New York City College Of Technology Department of Mathematics Sample MAT 1572 Final Examination, Fall 2007

By Prof. S. Singh

8/7/2007

- 1. Find P(X < 3 | X > 1) if:
 - a. *X* is a Poisson distribution with $\lambda = 1$.
 - b. *X* is a normal distribution with $\mu = 1$ and $\sigma^2 = 4$.
- 2. Let Y_j be the price of a stock on the j^{th} day and $Y_j Y_{j-1} = X_j$ be the difference in stock prices between consecutive days. Assume for $j \ge 1$, the X_j 's are i.i.d.
 - random variables with mean $\mu = 0$ and variance $\sigma^2 = 256$.
 - a. Show that $\sum_{j=1}^{365} X_j = \sum_{j=1}^{365} (Y_j Y_{j-1}) = Y_{365} Y_0$.
 - b. Find the probability that the price of the stock will be more than \$100 in 365 days if it is \$75 now.
- 3. If two distinct numbers are chosen from the set $\{1, 2, 3, 4, 5, 6\}$ randomly, and without replacement. Find the probability density function and expectation of the absolute value of the difference of the two numbers.
- 4. The moment generating function of a distribution is given by $m(t) = (e^t / 5 + 4 / 5)^{25}$. Identify the distribution and find the value of its mean, variance and $P(X \ge 1)$.
- 5. Let X and Y be independent random variables with E(X) = μ₁, V(X) = σ₁², E(Y) = μ₂ and V(Y) = σ₂², where μ₁, μ₂, σ₁² and σ₂² are positive constants that are less than one. Evaluate the following and give your answers in terms of μ₁, μ₂, σ₁² and σ₂².
 i. E(X+2Y) ii. V(X+2Y) iii. E(XY) iv. V(XY)
- 6. If a pair of fair dice is rolled, what is the probability that a sum of 3 is rolled before a sum of 7 is rolled?
- 7. f(x) is a probability density function with $f(x) = \begin{cases} c/x^3 & \text{for } (1,\infty) \\ 0 & \text{elsewhere} \end{cases}$.

Find the value of c and evaluate: i. P(1/2 < x < 2). ii. $P(-1/2 \le x \le 1/2)$

- 8. X is a Poisson distribution with mean λ . If $P(X = 2) = \frac{\lambda^2}{4}$. Find λ and the $P(X \ge 2)$.
- 9. In an experiment, probes land at random in the interval (0,1) on the x-axis.
 - a. What is the probability that a probe lands in the interval (3/4,1)?
 - b. If three probes operate independently and lands, what is the probability that exactly two probes land in the interval (3/4,1)?
- 10. If A and B are independent events, show that
 - a. A and \overline{B} are also independent events.
 - b. \overline{A} and \overline{B} are also independent events.

Solutions to the Sample MA 572 Final Examination Spring 2005

- 1. a. $P(X < 3 | X > 1) = \frac{1}{2(e-2)}$ b. P(X < 3 | X > 1) = 0.683
- 2. a. $\sum_{j=1}^{365} (Y_j Y_{j-1}) = (Y_1 Y_0) + (Y_2 Y_1) + \dots + (Y_{364} Y_{365}) + (Y_{365} Y_0) = Y_{365} Y_0$, this sum telescopes.

b.
$$P\left(\sum_{j=1}^{365} X_j > 25\right) \approx P\left(z > \frac{25}{16\sqrt{365}}\right) = P(z > 0.0817) = 0.47 \text{ or } 47\%$$
.

3. Let X be the absolute value of the difference. $P(X = i) = \frac{6-i}{15}$, i = 1, 2, 3, 4, 5

$$E(X) = \sum_{i=1}^{5} i \left(\frac{6-i}{15} \right) = \frac{7}{3}$$

- 4. This is a Binomial distribution with $p = \frac{1}{5}, q = \frac{4}{5}$ and n = 25. $\mu = np = 5$, $\sigma^2 = npq = 4$. $P(X \ge 1) = 1 - \left(\frac{4}{5}\right)^{25} \approx 0.996$
- 5. a. $\mu_1 + 2\mu_2$ b. $\sigma_1^2 + 4\sigma_2^2$ c. $\mu_1\mu_2$ d. $\sigma_1^2\sigma_2^2 + \sigma_1^2\mu_2^2 + \mu_1^2\sigma_2^2$ 6. $\frac{1}{4}$

- 7. c = 2i. 3/4 ii. 0
- 8. $\lambda = \ln 2$ and $P(X \ge 2) = \ln \sqrt{e/2}$
- 9. a. 1/4 b. 9/64
- 10. a. Use the disjoint union $A = (A \cap \overline{B}) \cup (A \cap B)$ b. Use the disjoint union $\overline{B} = (A \cap \overline{B}) \cup (\overline{A} \cap \overline{B})$ and the result from part a.