NEW YORK CITY COLLEGE OF TECHNOLOGY The City University of New York

DEPARTMENT:
COURSE:
TITLE:

DESCRIPTION:

Taylor polynomials, Mean Value Theorem, Taylor and Maclaurin series, tests of convergence, techniques of integration, improper integrals, areas, volumes and arc lengths.

TEXT:
E. Herman and G. Strang

Calculus Volume 1, OpenStax, Rice University, Houston Texas USA 2017
Calculus Volume 2, OpenStax, Rice University, Houston Texas USA 2017.

CREDITS:

PREREQUISITE:
MAT 1475

Prepared by:
Prof. Neil Katz
Prof. Arnavaz Taraporevala
Prof. Henry Africk
Prof. Kate Poirier
Spring, 2021
A. Testing Guidelines:

The following exams should be scheduled:

1. A one-hour exam at the end of the First Quarter.
2. A one session exam at the end of the Second Quarter.
3.
4. A one-hour exam at the end of the Third Quarter.
A one session Final Examination.
B. A graphing calculator is required.

Course-Based Learning Outcomes and Alignment with General Education Goals

Upon satisfactory completion of this course, the student will be able to:

MAT 1575	$\begin{array}{c}\text { NYCCT Gen Ed Common } \\ \text { Core }\end{array}$	CUNY Common Core
$\begin{array}{l}\text { Gather, interpret, and assess } \\ \text { information about calculus } \\ \text { from the textbook, other } \\ \text { written sources, an } \\ \text { instructor and other } \\ \text { informed individuals. }\end{array}$	$\begin{array}{l}\text { Think creatively, critically, } \\ \text { analyze data, develop } \\ \text { quantitative and information } \\ \text { literacy. }\end{array}$	$\begin{array}{l}\text { Gather, interpret, and assess } \\ \text { information from a variety of } \\ \text { sources and points of view. }\end{array}$
$\begin{array}{l}\text { Use algebraic, numerical } \\ \text { and graphical methods to } \\ \text { draw conclusions and solve } \\ \text { mathematical problems. }\end{array}$	$\begin{array}{l}\text { Think critically, analyze data, } \\ \text { develop quantitative reading and } \\ \text { writing skills, }\end{array}$	$\begin{array}{l}\text { Evaluate evidence and arguments } \\ \text { critically or analytically. }\end{array}$
$\begin{array}{l}\text { Produce well-reasoned } \\ \text { written or oral arguments } \\ \text { using evidence to support } \\ \text { conclusions in mathematics. }\end{array}$	$\begin{array}{l}\text { Think creatively, critically, } \\ \text { analyze data, develop } \\ \text { quantitative reading and writing } \\ \text { skills. }\end{array}$	$\begin{array}{l}\text { Produce well-reasoned written or } \\ \text { oral arguments using evidence to } \\ \text { support conclusions. }\end{array}$
$\begin{array}{l}\text { Identify and apply the } \\ \text { fundamental concepts and } \\ \text { methods of calculus and } \\ \text { apply them to the } \\ \text { biological, physical and } \\ \text { social sciences. }\end{array}$	$\begin{array}{l}\text { Think creatively, critically, and } \\ \text { apply quantitative knowledge to } \\ \text { the acquisition of } \\ \text { interdisciplinary and } \\ \text { intercultural knowledge. }\end{array}$	$\begin{array}{l}\text { Identify and apply the } \\ \text { fundamental concepts and } \\ \text { methods of a discipline or } \\ \text { interdisciplinary field } \\ \text { exploring the scientific } \\ \text { world, including, but not } \\ \text { limited to: computer }\end{array}$
science, history of science,		
life and physical sciences,		
linguistics, logic,		
mathematics, psychology,		
statistics, and technology-		
related studies.		

$\left.\begin{array}{|l|l|l|}\hline \text { Use the methods of calculus } \\ \text { to articulate and evaluate } \\ \text { the evidence supporting } \\ \text { theories in the physical, } & \begin{array}{l}\text { Develop the creative and critical } \\ \text { thinking skills to communicate } \\ \text { biological, and social } \\ \text { sciences }\end{array} & \begin{array}{l}\text { Articulate and evaluate the } \\ \text { intercultural knowledge. }\end{array}\end{array} \begin{array}{l}\text { empirical evidence supporting a } \\ \text { scientific or formal theory. }\end{array}\right\}$

Course Intended Learning Outcomes/Assessment Methods

Learning Outcomes	Assessment Methods	
1. Find anti-derivatives using integration by parts, trigonometric substitution, and the technique of partial fractions.	Classroom activities and discussion, homework, exams.	
2. Apply knowledge of integration to calculate volumes of solids of revolution, areas, and arc lengths.	Classroom activities and discussion, homework, exams.	
3. Evaluate improper integrals.	Classroom activities and discussion, homework, exams.	
4. Find Taylor polynomials and use Taylor's Theorem to estimate error.	Classroom activities and discussion, homework, exams.	
5. Construct infinite series and test for their convergence and divergence.	Classroom activities and discussion, homework, exams.	

General Education Learning Outcomes/Assessment Methods

Learning Outcomes	Assessment Methods
1. Understand and employ both quantitative and qualitative analysis to solve problems.	Classroom activities and discussion, homework, exams.
2. Employ scientific reasoning and logical thinking.	Classroom activities and discussion, homework, exams.
3. Communicate effectively using written and oral means.	Classroom activities and discussion, homework, exams.
4. Use creativity to solve problems.	Classroom activities and discussion, homework, exams.

New York City College of Technology Policy on Academic Integrity

Students and all others who work with information, ideas, texts, images, music, inventions, and other intellectual property owe their audience and sources accuracy and honesty in using, crediting, and citing sources. As a community of intellectual and professional workers, the College recognizes its responsibility for providing instruction in information literacy and academic integrity, offering models of good practice, and responding vigilantly and appropriately to infractions of academic integrity. Accordingly, academic dishonesty is prohibited in The City University of New York and at New York City College of Technology and is punishable by penalties, including failing grades, suspension, and expulsion. The complete text of the College policy on Academic Integrity may be found in the catalog.

MAT 1575 Calculus II		Text: E.Herman \& G.Strang, Calculus Volume 1\&2 OpenStax	
Session	Topic	Homework	WeBWorK
1	4.10 Antiderivatives (p. 485 - 496) [Volume 1]	P. 497: 465, 470, 471, 476, 477, 481, 484, 490, 492, 493, 495, 496, 499, 500, 501	Review-PowerRule Review-ProductRule Review-QuotientRule Review-ChainRule Integration - Antiderivatives
2	1.2 The Definite Integral (p. $27-39$) 1.3 The Fundamental Theorem of Calculus (p. $50-57)$	$\begin{aligned} & \text { P. 42: } 71,73,75,76,77,80,88 \text {, } \\ & 89,90,92 \\ & \text { P. } 60: 170,171,172,182,183 \text {, } \\ & 184,187 \end{aligned}$	Integration - Definite Integrals Integration - Fundamental Theorem constant bounds Integration - Fundamental Theorem variable bounds
3	1.5 Substitution (p. $82-89$) 1.6 Integrals Involving Exponential and Logarithmic Functions (p. 94-96, 98-102)	$\begin{aligned} & \text { P. 90: } 256,258,261,265,271 \text {, } \\ & \text { 273, } 275,276,292,293 \\ & \text { P. 103: } 320,321,322,325,327 \text {, } \\ & 328,330,332,335,337,338,355 \\ & -363 \text { all } \end{aligned}$	Integration - Substitution Integration - Exponential and Logarithmic
4	3.1 Integration by Parts (p. 261 - 268)	$\begin{aligned} & \text { P. 270: } 7,8,13,15,16,19,20,27 \text {, } \\ & 31,38,42,43,45 \end{aligned}$	Integration - Integration by Parts
5	3.2 Trigonometric Integrals (p. 273 - 282)	$\begin{aligned} & \text { P. 283: 73, 74, } 78-85 \text { all, } 91,97 \text {, } \\ & 98,100 \end{aligned}$	Integration - Trigonometric Integrals
6	3.3 Trigonometric Substitution (p. 285 - 293)	$\begin{aligned} & \text { P. 296: } 126,128,135-143 \text { odd, } \\ & 147-153 \text { odd } \end{aligned}$	Integration - Inverse Trigonometric Result
7	3.3 Trigonometric Substitution (continued) [cover problems \#132 on p. 196 and \#164 on p. 297]	$\begin{aligned} & \text { P. 296: 131, 133, 134, } 160-163 \\ & \text { all, } 164 \end{aligned}$	Integration - Trigonometric Substitution
8	First Examination		

9	3.4 Partial Fraction Decomposition (p. 298 303)	$\begin{aligned} & \text { P. 308: 183, 185, 187, 196, 197, } \\ & 199,200-204 \text { all } \end{aligned}$	
10	3.4 Partial Fraction Decomposition (cont.) (p. 303-306)	$\begin{aligned} & \text { P. 308: } 189,198,205,206,207 \text {, } \\ & 209-212 \text { all, } 215,217 \end{aligned}$	Integration - Partial Fractions
11	3.7 Improper Integration (p. $330-340$)	P. 343: 347-373 odd	Integration - Improper Integrals
12	6.3 Taylor and Maclaurin Polynomials (p.562-567)	P. 578: 118-123 all	
13	6.3 Taylor and Maclaurin Polynomials (continued) (p.567--573)	P. 578: $125,127,28,133,135$	Series - Taylor and Maclaurin Polynomials
14	Midterm Examination		
15	5.1 Sequences (p.427--444)	P. 447: 1, 3, 7, 9, 12, 13--15 odd, 23--37 odd, 47--51 odd	Series - Sequences
16	5.2 Infinite Series (p.450--459)	P. 466: 67--74, 76, 77, 79, 80, 83-85 odd, 89—95 odd	Series - Infinite Series
17	5.3 The Divergence and Integral Tests (p.471-478)	$\begin{aligned} & \text { P. 482: 138, 139--145 odd, 152- } \\ & 155,158,159,161,163 \end{aligned}$	Series - Integral Test Series - Divergence Test
18	5.4 Comparison Tests (p.485--492)	P. 493: 194-197all, 199, 200, 202, 204-206 all, 211 (optional: 222-223)	Series - Comparison Tests
19	5.5 Alternating Series (p.496--502)	P. 505: 250--257 all, 261-264 all, 266, 267	Series - Alternating Series
20	5.6 Ratio and Root Tests (p.509--519)	P. 522: 317--320 all, 323, 325, 328, 329--335 odd, 349, 351	Series - Ratio and Root Tests
21	6.1 Power Series and Functions (p.531--537) 6.2 Properties of Power Series (p.544--548, 552	P. 541: 13-21 odd, 24, 28 P. 558: 87-90 all, 96, 97	Series - Power Series

	-557)		
22	6.3 Taylor and Maclaurin Series (p.561--562, 573--576) 6.4 Working with Taylor Series (p.584--587, 590 -592)	```P. 578: 118-123 all, 140-147 all, 151-155 all P. 596: 203, 206, 207, 209, 219- 223 odd```	Series - Taylor and Maclaurin Series
23	Third Examination		
24	1.1 Approximating Areas (p. $5-20$)	P. 21: 1 - 7 odd, 12, 15, 16, 17	Applications - Approximation of Area
25	2.1 Areas Between Two Curves (p. 122 - 128)	P. 131: $1-7$ all, 11, $15-21$ all, 23 P. 271: 63	Applications - Area Between Curves
26	2.2 Determining Volumes by Slicing (p. 141 149)	P. 150: 58, 59, 74 - 80 all, 98 102 all Find the volume of the solid obtained by rotating the region bounded by the curves $y=x^{2}, y=$ $12-x, x=0$ and $x \geq 0$ about (a) the x-axis; (b) the line y $=-2$; (c) the line $y=15$; (d) the y-axis; (e) the line $x=-5$; (f) the line $x=7$.	Applications - Volumes by Slicing
27	2.3 Volumes of Revolution: Cylindrical Shells (p. $156-165)$	$\begin{aligned} & \text { P. 166: } 120-131 \text { all, } 140-143 \text { all, } \\ & \text { 145, 148, 158, } 159 \\ & \text { P. 271: } 61 \end{aligned}$	Applications - Volumes of Revolution
28	2.4 Arc Length of a Curve and Surface Area (p. 169-179)	$\begin{aligned} & \text { P. 180: } 165,166,171,173,174 \text {, } \\ & \text { 176, 177, 191, } 192 \\ & \text { P. 284: } 119 \end{aligned}$	Applications - Arc Length Application - Surface Area
29	Review		
30	Final Examination		

