NEW YORK CITY COLLEGE OF TECHNOLOGY The City University of New York

DEPARTMENT:	Mathematics	
COURSE:	MAT 1375	
TITLE:	Precalculus	
DESCRIPTION:	Topics include an in-depth study of functions such as polynomial functions, inverse functions, radical functions, rational functions, trigonometric functions, exponential and logarithmic functions; solving inequalities; elements of vectors and complex numbers; solving trigonometric equations and identities involving sum, dou- ble and half-angle formulas; and progressions. A scientific calcu- lator is required.	
TEXT:	Precalculus by Thomas Tradler and Holly Carley, Third Edition	
CREDITS:	4	
PREREQUISITES:	MAT 1275 or MAT 1275CO OR Meet the Math Placement for MAT 1375	
	Prepared by Prof. Thomas Tradler (Revised Fall 2023)	

A. Testing guidelines

The following exams should be scheduled:

- 1. A one-hour exam at the end of the First Quarter
- 2. A one-session exam at the end of the Second Quarter
- 3. A one-hour exam at the end of the Third Quarter
- 4. A one-session Final Examination
- B. A scientific calculator is required.

Course-Based Learning Outcomes and Alignment with General Education Goals

Upon satisfactory completion of this course, the student will be able to:

Course Learning Outcomes	General Education Learning	Required Core: Mathematical
	Outcomes	and Quantitative Reasoning
Be able to graph functions involv- ing polynomial, rational, radical, exponential, or trigonometric func- tions. Understand the relationship between the formula of a function, the domain and range of a function, the graph of a function, and equa- tions involving a function.	Be able to draw conclusions and re- lated outcomes from formulas and graphs of functions.	Interpret and draw appropriate in- ferences from quantitative represen- tations, such as formulas, graphs, or tables.
Be able to analytically and graphi- cally solve equations involving poly- nomial, rational, exponential, or trigonometric functions. Be able to identify features of a function such as maxima, minima, or asymptotes to identify features of the original problem.	Be able to analyze a function and its behavior.	Use algebraic, numerical, graphical, or statistical methods to draw ac- curate conclusions and solve math- ematical problems.
Be able to frame word problems in terms of mathematical equations and/or graphs. Be able to interpret the mathematical solutions in terms of the original language of the prob- lem.	Be able to use existing knowledge or views to phrase an application in terms of a mathematical prob- lem, and be aware of the influence of its context and underlying assump- tions. Be able to convert and repre- sent relevant information into vari- ous mathematical forms.	Represent quantitative problems expressed in natural language in a suit- able mathematical format
Be able to write solutions of math- ematical problems involving poly- nomial, rational, exponential, or trigonometric functions with full de- tailed explanations. Be able to represent a mathematical setup us- ing technology. Be able to answer questions concerning mathematical problems involving polynomial, ra- tional, exponential, or trigonomet- ric expressions orally or in written form.	Be able to perform calculations in- volving functions, and apply this to analyze a mathematical setup, in- cluding drawing appropriate conclu- sions based on quantitative analysis of data. Be able to give explanations of your conclusions, including its ev- idence.	Effectively communicate quantita- tive analysis or solutions to math- ematical problems in written or oral form.
Be able to find solutions of equa- tions and be able to identify the be- havior of a mathematical setup us- ing graphs of functions. Be able to use technology to find and check ex- pected features. Be able to recog- nize error in proposed solutions and explain in written or oral form the nature of such an error as well as be able to correct it.	Be able to evaluate the underly- ing assumptions of an argument. Be able to recognize the limitations and implications of a mathematical setup.	Evaluate solutions to problems for reasonableness using a variety of means, including informed estima- tion.
Be able to use a variety of mathe- matical representations of functions to express qualitative and quantita- tive features of a problem.	Be able to select an appropriate model of a given setup and interpret the information presented in math- ematical form.	Apply mathematical methods to problems in other fields of study.

New York City College of Technology Policy on Academic Integrity

Students and all others who work with information, ideas, texts, images, music, inventions, and other intellectual property owe their audience and sources accuracy and honesty in using, crediting, and citing sources. As a community of intellectual and professional workers, the College recognizes its responsibility for providing instruction in information literacy and academic integrity, offering models of good practice, and responding vigilantly and appropriately to infractions of academic integrity. Accordingly, academic dishonesty is prohibited in The City University of New York and at New York City College of Technology and is punishable by penalties, including failing grades, suspension, and expulsion. The complete text of the College policy on Academic Integrity may be found in the catalog.

MAT 1375 - Precalculus

Textbook: "*Precalculus*" by Thomas Tradler and Holly Carley, Third Edition, available on www.lulu.com **PDF available from:** https://openlab.citytech.cuny.edu/mat1375coursehub/resources/textbook/

Class	Topic	Homework	WeBWorK Set
			(Challenge Problems are optional.)
1	1. Numbers and functions	1.1, 1.2, 1.3, 1.5, 1.6, 1.7	Interval Notation
			Functions - Introduction to Functions
2	2. Functions via formulas	2.1 (a)-(b), 2.2, 2.4 (b), (f)-(h),	Functions - Difference Quotient
		2.6 (a), (c), (d), (f)-(h)	Functions - Function Notation
3	3. Functions via graphs	3.1 (a)-(c), 3.2(a)-(c),	Functions - Linear Functions
		3.3 (a)-(g) and (m)-(t), 3.4 , 3.5	Functions - Graphs
4	4. Basic functions and transformations	4.1 (a)-(b), 4.2 (a)-(c) and (e), 4.8 ,	Functions - Graphing Calculator
	(4.2 Exploring Functions with	4.9 (a)-(f), 4.10 (a)-(d), 4.12 (a)-(e),	Functions - Translations
	Desmos is optional)	(optional: 4.3 (a)-(d), 4.4 (c))	Functions - Symmetries
5	5. Operations on functions	5.1 (a)-(c), 5.2 (a)-(b), 5.3 (a)-(d),	Functions - Operations
		5.4 (a)-(c), 5.5 (a)-(b), 5.6, 5.7	
6	6. The inverse of a function	6.1 (a)-(c), 6.2 (a)-(f) and (l)-(p),	Functions - Inverse Functions
		6.3 (a)-(c), 6.4 (a)-(c), 6.5 (a) and (d)	
7	7. Dividing polynomials	7.1 (a)-(c) and (j)-(k), 7.2, 7.3, 7.4 (a)-(d)	Polynomials - Division
	(7.3 Synthetic Division is optional)	(optional: $7.5 (a)-(d)$)	
8	8. Graphing polynomials (8.3 Graph-	8.1-8.4 all, 8.5 (a)-(c), 8.7 (b), (g), (i), (j)	Polynomials - Graphs
	ing Polynomials by Hand is optional)	(optional: 8.8)	
9	First Examination		
10	9. Roots of polynomials	9.3 (a), (c), (d), (e), (g), 9.4 (a), (b), (e),	Polynomials - Theory
	(9.1 Rational Root Theorem is	9.5 (a), (b), (d), 9.6 (a)-(c) and (f)-(i)	
	optional)	(optional: $9.1 (a)-(c)$)	(Polynomials - Rational Roots is optional)
11	10. Rational functions	10.1, 10.2, 10.3, 10.4 (a), (b)	Rational Functions - Domains
			Rational Functions - Asymptotes
	(10.2 Graphing Rational Functions by		Rational Functions - Intercepts
	Hand is optional)		Rational Functions - Comprehensive
12	11. Exploring discontinuities and	11.1, 11.2, 11.3 (a)-(d), 11.4 (a)	Rational Functions - Graphs
	asymptotes		
	(11.2 Limits is optional)	(optional: 11.5, 11.6 (a), (d) - (f))	(Limits is optional)
13	12. Solving inequalities	12.1 (a), (b), 12.2 (a)-(c), (h), 12.4 (a)-(c),	Polynomials - Inequalities
		12.5 (a), (c)-(g)	Rational Functions - Inequalities

Class	Topic	Homework	WeBWorK Set
14	13. Exponential and logarithmic	13.1 (a)-(f), 13.2 (a)-(e), 13.4, 13.5 (a)-(b),	Exponential Functions - Graphs
	functions	13.6 (a)-(h)	Logarithmic Functions - Graphs
15	14. Properties of log and log equations	14.1 (a)-(e), 14.2 (a)-(f),	Logarithmic Functions - Properties
		14.3 (a), (b), (e)-(h)	Logarithmic Functions - Equations
16	Midterm Examination		
17	15. Equations and applications of exp	15.1 (a)-(c) and (e), 15.2 (a)-(e)	Exponential Functions - Equations
		15.3 (a)-(b), 15.5-15.10 all	
18	16. Compound interest and half-life	16.2 (a)-(c), 16.3 (a)-(e), 16.4-16.10 all	Exponential Functions - Growth and Decay
19	17. Trigonometric functions reviewed	17.1 (a)-(d), 17.2 (a)-(d)	Trigonometry - Unit Circle
		17.3 (a)-(i) and (g)-(s)	Trigonometry - Sum Difference and Half
		17.4 (a)-(c), 17.5 (a), (b), and (d)	Angle Formulas
20	18. Graphing trigonometric functions	18.2, 18.3, 18.4 (a)-(d), 18.5 (c)-(j)	Trigonometry - Graphing Amplitude
			Trigonometry - Graphing Period
			Trigonometry - Graphing Phase Shift
			Trigonometry - Graphing Comprehensive
21	19. Inverse trigonometric functions	19.1, 19.2 (a)-(j), 19.3 (a)-(c) and (g)-(i)	Trigonometry - Inverse Functions
22	20. Solving trigonometric equations	20.1 (a)-(d), 20.2 (a)-(c), 20.4 (a)-(c),	Trigonometry - Equations
		20.5 (a)-(f)	
23	21. Trigonometric identities	21.1 (a)-(b), 21.2 (a), 21.3 (c)-(g),	Trigonometry - Identities
	(21.2 Further Identities Revisited	21.4 (a) and (e)-(f)	
	is optional)	(optional: 21.5 (a)-(b), 21.6 (b)-(c))	
24	Third Examination		
25	22. Vectors in the plane	22.1 (a) and (d), 22.2 (a)-(c) and (e)-(h),	Vectors - Magnitude and Direction
		22.3 (b)-(e) and (k)-(1), 22.4 (a)-(b)	Vectors - Operations
26	23. Complex numbers	23.1 (a)-(c), 23.2 (b)-(e), 23.3 (a)-(c),	Complex Numbers - Operations
		23.4 (a)-(d), 23.5 (a), 23.6 (a)-(d),	Complex Numbers - Magnitude
		23.7 (a)-(d)	and Direction
07	24 0 1		Complex Numbers - Polar Form
27	24. Sequences and series	24.1 (a)-(c), 24.3 (a)-(d), 24.4 (a)-(d), 24.5 (c) (b) 24.7 (c) (b) and (c) (i)	Sequences - Intro
		24.5 (a)-(b), 24.7 (a)-(b) and (e)-(1)	Series - Intro
			Sequences - Arithmetic
28	25 The geometric series	251(a)(d) 252(a)(a) 252(a) and (b)	Sequences Coometrie
20	20. The geometric series	25.1 (a)-(u), 25.2 (a)-(c), 25.3 (a) and (n)	Series Coometric
20	Boviow	Final Exam Boylow Problems	Final Exam Review
30	Final Exam		I IIIGI EZAGIII IUGVIGW
1 00	I mai Dham		