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Introduction – The Electrical/Electronics Engineering 

The growing sensitivity to the technologies on Wall Street is clear 
evidence that the electrical/electronics industry is one that will have a 
sweeping impact on future development in a wide range of areas that 
affect our life style, general health, and capabilities. 

• Semiconductor Device 

• Analog & Digital Signal Processing 

• Telecommunications 

• Biomedical Engineering 

• Fiber Optics & Opto-Electronics 

• Integrated Circuit (IC) 
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Figure 1.1 Computer chip on 
finger. (Courtesy of Intel Corp.) 
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Introduction – A Brief History 

FIGURE 1.2FIGURE 1.2 Time charts: (a)Time charts: (a) 
longlong-range; (b) expandedrange; (b) expanded.. 
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Units of Measurement 

The numerical value substituted into an equation must have 
The unit of measurement specified by the equation 

Examples 

1 mi = 5280 ft 
4000 ft = 0.7576 mi 
1 min = 0.0167 h 

d 0. 7576mi v = = = 45. 73 mi/ h 
t 0. 0167h 

ET162 Circuit Analysis – Introduction Boylestad 5 

Systems of Units 

The English system is based on a single standard, the metric is 
subdivided into two interrelated standards: the MKS and the CGS. 

English Metric 
Length: Yard (yd) Length: Meter (m) 
Mass: Slug Mass: Kilogram (kg) 
Force: Pound Force: Newton (N) 
Temperature: Fahrenheit (°F) Temperature: Kelvin (K) 
Energy: Foot-pound (ft-lb) Energy: Joule (J) 
Time: Seconds (s) Time: Seconds (s) 
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Systems of Units 

FIGURE 1.3FIGURE 1.3 Comparison ofComparison of 
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Significant Figures, Accuracy, and Rounding off Powers of Ten 
 In the addition  or subtraction of approximate numb  ers, the entry with  the 

1 = 100 1/10 =  0.1 =  10-1 
lowest level of accuracy determines the format of the solution. 

10 = 101 1/100 = 0.0  1 = 10-2 
For the multiplication and division of approximate numbers, the result has 

100 =  102 1/1000 = 0.001 = 10-3 
the same num  ber of significant figures as the number with the latest number 

1000 =  103 1/10,000 =  0.0001 =  10-4 
of significant figures. 

Ex. 1-1 Perform  the indicated operations with the following  Ex. 1-2 
approximate numbers and round off to the appropriate level of accuracy. 

1 1 − 3 
a. 532.6 + 4.02  + 0.036 = 536.656  ≈ 536.7 a . = + 

= 
3 10 

b. 0.04 + 0.003  + 0.0064  = 0.0494  ≈ 0.05 1000 10 
c. 4.632 × 2.4 = 11.1168  ≈ 11 
d. 3.051 × 802 = 2446.902 ≈ 2450 1 1 b . = + 5 

0 .00001 10 −
=

6.  
 10 

e. 1402/ 4 =  219.0625  ≈ 220 5

f. 0.0046/0.05 =  0.0920  ≈ 0.09 
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Ex. 1-3 
ic Operations 

a. (1000)(10,0 104
Basic Arithmet

00) = (103)( ) = 10(3+4) = 107 

b. (0.00001)(100) =  (10-5)(102) = 10 (-5+2) = 10-3 When adding or subtracting numbers in a powers-of-ten format, be sure th  at 
the power of ten is the same for each number. Then separate the multipliers, 

Ex. 1-4 perform the required operation, and apply the same power of ten to the 
results. 

,100 000 10 5a . = = ( 5 − 2 ) 10 
100 10 2

10 = 3
Ex. 1-6 

1000 10 3 )
= = ( 3 − ( − 4 = ( 3 + 4 ) = a. 6300 + 75,000 b = (6.3)(1000) + (75)(1000) .  ) − 

  
4 10 10  10 7

0 .0001 10 = 6.3 × 103 + 75  × 103 

= (6.3 + 75) × 103 

= 81.3 × 103 
Ex. 1-5 a. 0.00096 – 0.000086 = (96)(0.00001) – (8.6)(0.00001) 

4 2 4 (2)(4) 8 = 96 × 10-5 – 8.6 × 10-5 
a. (100) = (10 ) = 10 = 10

= (96 – 8.6) × 10-5 
b. (1000)-2 = (103)-2 = 10  (3)(-2) = 10-6 

c. (0.01)-3 = (10-2)-3 = 87.4 × 10-5 
= 10(-2)(-3) = 106 
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Ex. 1-7 a. (0.0002)(0.000007) = [(2)(0.0001)] [(7)(0.000001)] 
= (2 × 10-4)(7 × 10-6) 
= (2)(7) × (10-4)(10-6) 
= 14 × 10-10 

a. (340,000)(0.00061) = (3.4 × 105)(61 × 10-5) 
= (3.4)(61) × (105)(10-5) 
= 207.4 × 100 

= 207.4 

Ex. 1-9 a. (0.00003)3 = (3 × 10-5)3 = (3 × 10-5)3 = (3)3 × 10-15 

b. (90,800,000)2 = (9.08 × 107)2 = (9.08)2 × (107)2 

= 82.4464 × 1014 
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Ex. 1-8 
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Calculators and Order of Operation 
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HW 1-26 Perform the following conversions: 
a.  1.5 min to seconds 
b.  0.04 h to seconds 
c.  0.05 s to microseconds 
d. 0.16 m to millimeters 
e.  0.00000012 s to nanoseconds 
f.  3,620,000 s to days Homework 1: 12, 14, 24, 26, 41, 42, 43 
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At a fixed temperature of 20°  C (room temperature), the resistance is 
related to the other three factor by 

lR =ρ (ohms, Ω) 

ρ
A 

: resistivity of the sample (CM-ohms/ft at T=20°C) 
l : the length of the sample (feet)
A : cross-sectional area of the sample (circular mils (CM))

FIGURE 1.2 Factors affecting the 
resistance of a conductor. 
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Introduction to Resistance 

The flow of charge through any material 
encounters an  opposing force similar in 
many aspect to mechanical friction. This 
opposition, due to the collisions between 
electrons and other atoms in  the material, 
which converts electrical energy  into  
another form of energy such as heat, is 
called the resistance of the material. Th  e Figure 1.1 Resistance symbol and 
unit of measurement of resistance is the ohm  notation. 

(Ω). 
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ET162 Circuit Analysis Voltage and Current Boylestad

Resistance: Circular Wires 

FIGURE 1.3 Cases in which R2 > R1. For each case, all remaining parameters that 
control the resistance level are the same. 

For two wires of the same physical size at the same temperature, 

• the higher the resistivity (ρ), the more the resistance 

• the longer the length of a conductor, the more the resistance 

• the smaller the area of a conductor, the more the resistance 

• the higher the temperature of a conductor, the more the resistance 

ET162 Circuit Analysis –Current and Voltage Boylestad 5 

Types of Resistors – Fixed Resistors 
Resistors are made in many forms, but all belong in either of two groups: fixed or 
variable. The most common of the low-wattage, fixed-type resistors is the molded 
carbon composition resistor. 

FIGURE 1.3 Fixed composition resistor. 

FIGURE 1.4 Fixed composition 
resistors of different wattage ratings. 

The relative sizes of all fixed and variable 
resistors change with the power rating, 
increasing in size for increased power ratings in 
order to withstand the higher currents and 
dissipation losses. 

ET162 Circuit Analysis –Current and Voltage Boylestad 6 

Types of Resistors – Variable Resistors 

Variable resistors have resistance that can be varied by turning a dial, knob, 
screw, or whatever seems appropriate for the application. 

Color Coding and Standard Resistor Values 
A whole variety of resistors are large enough to have their resistance in 
ohms printed on the casing. However, some are too small to have numbers 
printed on them, so a system of color coding is used.

 – 8 

FIGURE 1.6 Color coding of fixed molded composition resistor. 

The first and second bands 
represent the first and second 
digits, respectively. The third 
band determines the power-of-
ten multiplier for the first two 
digits. The fourth band is the 
manufacture’s tolerance. The 
fifth band is a reliability factor,  
which gives the percentage of 
failure per 1000 hours of use. 

1099 White 
1088 Gray 
1077 Violet 
1066 Blue 
1055 Green 
1044 Yellow 

0.01% Yellow1033 Orange 
0.01% Orange20% No band 1022 Red 
0.1% Red10% Silver1011 Brown 
1% Brown 5% Gold1000 Black 

Band 5Band 4Band 3Band 1-2 

Table 1 Resistor color 
coding. 

FIGURE 1.5 Potentiometer: (a) symbol: (b) & (c) rheostat 
connections; (d) rheostat symbol. 
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Conductance Ex. 1-1 Find the range in which a resistor having the following color bands must 
exist to satisfy the manufacturer’s tolerance: 

±10%10–1 = 0.1 93 

No colorSilverGoldWhiteOrange 

5th Band 4th Band 3rd Band 2nd Band 1st Band b. 

a. 82Ω ± 5% (1% reliability) 

Since 5% of 82 = 4.10, the resistor should be within the range of 82Ω ± 
4.10Ω, or between 77.90 and 86.10Ω. 

b. 3.9Ω ± 10% = 3.9Ω ± 0.39Ω 

The resistor should be somewhere between 3.51 and 4.29Ω. 
ET162 Circuit Analysis –Current and Voltage Boylestad 9 

The quantity of how well the material will conduct electricity 
is called conductance (S). 

1G = 
R 

(siemens, S) 

Indicating that increasing A the area or decreasing G = (S) either the length or the ρ ⋅l resistivity will increase the 
Conductance. 

ET162 Circuit Analysis –Current and Voltage Boylestad 10 

Ex. 1-2 What is the relative increase or decrease in conductivity of a conductor if Ohmmeters 
the area is reduced by 30% and the length is increased by 40%? The resistivity is 
fixed. The ohmmeter is an instrument used to perform the following tasks 

and several other useful functions. 

ii 

i 

l 
AG 
ρ 

= 
1. Measure the resistance of individual or combined elements 
2. Direct open-circuit (high-resistance) and short-circuit (low-(siemens, S) resistance) situations 
3. Check continuity of network connections and identify wires of a 

multi-lead cable 
with the subscript i for the initial value. Using the subscript n for 

4. Test some semiconductor devices new value : 

i 
iii 

i 

ii 

i 

nn 

n 
n G

Gl 
A 

l 
A 

l 
AG 5.0

4.1
70.0

4.1
70.0

)4.1(
70.0

===== 
ρρρ 
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FIGURE 1.8 Checking the continuity of 
a connection. 

FIGURE 1.7 Measuring the resistance of 
a single element. 
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FIGURE 1.11 
Terminal 
characteristics: (a) 
ideal voltage 
source; (b) ideal 
current source. 

Boylestad 16 

Ex 1-3 In Figure, three conductors of different materials are presented. 
a. Without working out the numerical solution, determine which section would  

appear to have the most resistance. Explain. 
b. Find the resistance of each section and compare with the result of (a) (T = 20°C) 

Voltage 
The voltage across an element is the work (energy) required to move 
a unit positive charge from the  ̶ terminal to the + terminal. The unit 
of voltage is the volt, V. 

A potential difference of 1 volt (V) exists between two points if 1 joul 
(J) of energy is exchanged in moving 1 coulomb (C) of charge 
between the two points. 

a. Rsilver > Rcopper > Raluminum 

(  )(  )  

(  )(  )  

( )(  )  
Ω=== 

Ω=== 

Ω=== 

34.0
2500 

5017:min 

037.1
100 

1037.10: 

9.9
1 

19.9: 

CM 
ft 

A 
lRumAlu 

CM 
ft 

A 
lRCopper 

CM 
ft 

A 
lRSilver 

ρ 

ρ 

ρ 
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In general, the potential difference between 
two points is determined by: 

V = voltage (V) 
Q = coulombs (C) 
W = potential energy (J) 

V W 
Q 

= 

FIGURE 1.9 Defining the unit of measurement for 
voltage.Boylestad 14ET162 Circuit Analysis –Current and Voltage 

Fixed (dc) Supplies 
The terminology dc is an abbreviation for direct current, which 
encompasses the various electrical systems in which there is a 
unidirectional (“one direction”) flow of charge. 

DC Voltage Sources 
Dc voltage sources can be divided into three broad categories: (1) 

Batteries (chemical action), (2) generators (electro-mechanical), 
and (3) power supplies (rectification). 

Ex. 1-4 Find the potential difference between two points in an electrical system 
if 60 J of energy are expended by a charge of 20 C between these two points. 

V
C 
J 

Q 
WV 3 

20 
60 

=== 

( )( ) 
JJ 
VVQW 

µ30010300 
61050 

6 

6 

=×= 

×=⋅= 
− 

− 

Ex. 1-5 Determine the energy expended moving a charge of 50 μC through a 
potential difference of 6 V. 
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FIGURE 1.10 Symbol 
for a dc voltage source. 
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Current 
The electrical effects caused by charges in motion depend on the rate 
of charge flow. The rate of charge flow is known as the electrical 
current. With no external forces applied, the net flow of charge in a 
conductor in any direction is zero. 

FIGURE 1.12 Basic electrical circuit. 

If 6.242×1018 electrons (1 coulomb) pass through the imaginary 
plane in Fig. 2.9 in 1 second, the flow of charge, or current, is said to 
be 1 ampere (A). 

1C −19Ch arg e / electron = Qe = 18 = 1.6×10 C 
6.242×10 

The current in amperes can now be calculated using the following 
equation: 

Q = I ⋅ t (coulomb, C) 
Q I = amperes (A) andI = Q = coulombs (C) 
t t = seconds (s) Qt = (seconds, s)

I 
ET162 Circuit Analysis –Current and Voltage Boylestad 17 ET162 Circuit Analysis –Current and Voltage Boylestad 18 

Ex. 1-6 The charge flowing  through the imaginary surface of Fig. 1-12 is 0.16 C 
every 64 ms. Determine the current in ampere. 

Q 0.16C 160×10−3 CI = = = = 2.50 A−3 −3t 64×10 s 64×10 s 

Ex. 1-7 Determine the time required for 4 × 1016 electrons to pass through the 
imaginary surface of Fig. 1.12 if the current is 5 mA. 

16 ⎛ 1C ⎞Q = 4×10 electron⎜ ⎟18⎝ 6.242×10 electrons ⎠ 
−2= 0.641 10× C = 0.00641 C = 6.41 mC 

3−Q 6.41 10× Ct = = −3I 5×10 A 
= 1.282 s 

Ammeters and Voltmeters 
It is important to be able to measure the current and voltage levels of 
an operating electrical system to check its operation, isolate 
malfunctions, and investigate effects. Ammeters are used to measure 
current levels while voltmeters are used to measure the potential 
difference between two points. 

FIGURE 1.13 Voltmeter and ammeter connection for an up-scale (+) reading. 
ET162 Circuit Analysis – Voltage and Current Boylestad 20ET162 Circuit Analysis –Current and Voltage Boylestad 19 
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Introduction to Ohm’s Law 

Figure 4.1 Basic Circuit. 

Ohm’s law clearly reveals that 
a fixed resistance, the greater 
the voltage across a resistor, 
the more the current, the more 
the resistance for the same 
voltage, the less the current. 

V 

RI 

),( 

),( 

),( 

Ω= 

= 

= 

ohms
I 
ER 

VvoltsRIE 

Aamperes
R 
EI 
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Ex. 4-1 Determine the current resulting from the application of a 9-V battery 
across a network with a resistance of 2.2 Ω. 

I E 
R 

V 
A= = = 

9 
2 2  

4 09  
. 

.
Ω 

Ex. 4-2 Calculate the resistance of a 60-W bulb if a current of 500 mA results 
from an applied voltage of 120 V. 

R E 
I 

V 
A 

= = 
× 

= − 

120 
500 10 

2403 Ω 
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For an isolated resistive element, the polarity of the voltage drop 
is as shown in Fig. 4.2(a) for the indicated current direction. A 
reversal in current will reverse the polarity, as shown in Fig. 
4.2(b). In general, the flow of charge is from a high (+) to a low (–) 
potential. 

FIGURE 4.2 Defining polarities. 
ET162 Circuit Analysis – Ohm’s Law Boylestad 5 

I E 
R 

V 
mA= = 

× 
= 

16 
2 10  

83 Ω 

Ex. 4-3 Calculate the current through the 2-kΩ resistor of Fig. 4.3 if the voltage 
drop across it is 16 V. 

Ex. 4-4 Calculate the voltage that must be applied across the soldering iron of 
Fig. 4.5 to establish a current of 1.5 A through the iron if its internal resistance is 
80 Ω. 

(  )(  )  E I R A V= ⋅  =  =15 80 120 . Ω 

FIGURE 4.4 Example 
4.4 
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FIGURE 4.3 Example 4.3 

Plotting Ohm’s Law 
Graph, characteristics, plots play an important role in every technical 
field as a mode through which the broad picture of the behavior or 
response of a system can be conveniently displayed. It is therefore 
critical to develop the skills necessary both to read data and to plot 
them in such a manner that they can be interpreted easily. 

For most sets of characteristics 
of electronic devices, the current 
is represented by the vertical 
axis, and the voltage by the 
horizontal axis, as shown in Fig. 
4.5. 

FIGURE 4.5 Plotting Ohm’s 
law 
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R V 
Idc = 

If the resistance of a plot is unknown, it can 
be determined at any point on the plot since 
a straight line indicates a fixed resistance. At 
any point on the plot, find the resulting 
current and voltage, and simply substitute 
into following equation: 
The equation states that by choosing a particular ∆V, one can obtain 
the corresponding ∆I from the graph, as shown in Fig. 4.6 and 4.7, 
and then determine the resistance. 

FIGURE 4.6 Demonstrating on an I-V plot that the 
less the resistance, the steeper is the slope FIGURE 4.7 

R 
V 
I 

= 
∆ 

∆ 
FIGURE 4.8 Example 4.5. 

Ex. 4-5 Determine the resistance associated with the curve of Fig. 4.8 using 
equations from previous slide, and compare results. 

At V V I mA and 

R V 
I 

V 
mA 

kdc 

= = 

= = = 

6 3 
6 

3 
2 

, , 

Ω 

At the erval between V and V 

R V 
I 

V 
mA 

k 

int ,6 8 
2 

1 
2= = = 

∆ 

∆ 
Ω 
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Power 

P W 
t 

watts W or joules ond J s= (  ,  ,  /  sec  ,  /  )  

Power is an indication of how much work can be done in a specified 
amount of time, that is, a rate of doing work. Since converted energy is 
measured in joules (J) and time in seconds (s), power is measured in 
joules/second (J/s). The electrical unit of measurement for power is the 
watt (W), defined by 

1 watt (W) = 1 joules/second (J/s) 

1 horsepower ≈ 746 watts 

P W 
t 

Q V  
t 

V Q 
t 

V I  watts  where  I  Q 
t 

= = 
⋅ 

= = =( ) 
Eq. 1 
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Eq. 2 

P V  I  V  V 
R 

V 
R 

= ⋅  =  ⎜ ⎟ = watts ⎛ 
⎝

⎞ 
⎠

2 

( ) 
Eq. 3 

= (I  R I  ) = I R  (watts  )P V I  = ⋅ ⋅  2 

The result is that the power absorbed by the resistor of Fig. 4.9 can be found 
directly depends on the information available. 

Power can be delivered or absorbed as defined by the polarity of the voltage 
and direction of the current. For all dc voltage sources, power is being 
delivered by the source if the current has the direction appearing in Fig. 4.10 
(a). 

3 

FIGURE 4.9 Defining the power to a 
resistive element. 
ET162 Circuit Analysis – Ohm’s Law Boylestad 

FIGURE 4.10 Battery power: (a) supplied; (b) absorbed. 
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Ex. 4-6 Find the power delivered to the dc motor of Fig. 4.11. 

( )( )P V  I  V  A  
W  kW  

= = 

= = 

120 5 
600 0 6. 

FIGURE 4.11 Example 4.6. 

Ex. 4-7 What is the power dissipated by a 5-Ω resistor if the current is 4 A? 

P = I2R = (4 A)2(5 Ω) = 80 W 

ET162 Circuit Analysis – Ohm’s Law Boylestad 12 

FIGURE 4.12 The nonlinear I-V characteristics of 
a 75-W light bulb. 

Ex. 4-8 The I-V characteristics of a light bulb are powered in Fig. 4.12. Note the 
nonlinearity of the curve, indicating a wide range in resistance of the bulb with 
applied voltage as defined by the earlier discussion. If the rated voltage is 120 V, 
find the wattage rating of the bulb. Also calculate the resistance of the bulb 
under rated conditions. 

At V I A 
P V  I  V  A  W  

120 0 625 
120 0 0625 75 

, . 
(  )(  .  )  

= 

= = = 

At V R V 
I 

V 
A 

120 120 
0 625 

192, 
. 

= = = Ω 
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HW 4-52 A stereo system draws 2.4 A at 120 V. The audio output power is 50 W. 
a. How much power is lost in the form of heat in the system? 
b. What is the efficiency of the system? 

Sometimes the power is given and the current or voltage must be 
determined. 

P I  R  I  P 
R 

or I P 
R 

ampere= ⇒ = =2 2 ( ) 

P V 
R 

V PR or V PR volts = ⇒ = = 
2 

2 ( ) 

a. Pi = EI = (120V )(2.4 A) = 288 W 
P = P + P , P = P − P = 288 W − 50 W = 238 Wi o lost lost i 0 

P0 50Wb. η% = = 100% = ×100% = 17.36%
Pi 288W 

Ex. 4-9 Determine the current through a 5-kΩ resistor when the power dissipated 
by the element is 20 mW. 

I P 
R 

W 
A  mA  = = 

× 

× 
= × = × = 

− 
− −20 10 

5 10  
4 10  2 10  2  

3 

3 
6 3 

Ω Homework 4: 2, 4, 6, 8, 20, 24, 25, 26, 49, 52 
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Kirchhoff’s Voltage Law 

Voltage Divider Rule 

Interchanging Series Elements 

Series Circuits – Notation 

Ideal dc Voltage Sources vs. Non-ideal Sources 

Voltage Regulation 

Key Words: Series Circuit, Kirchhoff’s Voltage Law, Voltage Divider Rule 
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Series Circuits - Introduction 

Two types of current are available to the consumer today. One is direct 
current (dc), in which ideally the flow of charge (current) does not 
change in magnitude with time. The other is sinusoidal alternating 
current (ac), in which the flow of charge is continually changing in 
magnitude with time. 

FIGURE 5.1 Introducing the basic components of an electric circuit. 

V (volt) = E (volt) 
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Series Circuits 
A circuit consists of any number of elements joined at terminal points, 

providing at least one closed path through which charge can flow. 
Two elements are in series if 

1.They have only one terminal in common 
2.The common point between the two points is not connected to another 

current-carrying element. 

FIGURE 5.2 (a) Series circuit; (b) situation 
in which R1 and R2 are not in series. 

The current is the same through series 
elements. 

The total resistance of a series circuit is 
the sum of the resistance levels 

In Fig. 5.2(a), the resistors R1 and R2 are 
in series because they have only point b 
in common. 

T 

s R 
EI = 

1 

2 
1 

1 
2 

1111 R 
VRIIVP === 

The total resistance of a series circuit is the sum of the resistance levels. In 
general, to find the total resistance of N resistors in series, the following 
equation is applied: 

RT = R1 + R2 + R3 + · · ·+ RN 

(amperes, A) 

Pdel = EI 

Pdel = P1 + P2 + P3 + · · · + PN 

The total power delivered to a 
resistive circuit is equal to the 
total power dissipated by 
resistive elements. 

V1 = IR1, V2 = I R2, V3 = I R3, · · ·VN = I RN 

(volts, V) 

(ohms, Ω) 

FIGURE 5.3 Replacing the series resistors R1 
and R2 of Fig. 5.2 (a) with the total resistance. 

(watts, W) 

(watts, W) 
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== 

Ex. 5-1 a. Find the total resistance for the series circuit in Figure 5.4. 
b. Calculate the source current Is. 
c. Calculate the voltages V1, V2, and V3. 
d. Calculate the power dissipated by R1, R2, and R3. 
e. Determine the power delivered by the source, and compare it to the 

sum of the power levels of part (b). 

(a) RT = R1 + R2 + R3 =2Ω + 1Ω + 5Ω = 8Ω 

(c) V1 = IR1 = (2.5A)(2Ω) = 5V 
V2 = IR2 = (2.5A)(1Ω) = 2.5V 
V3 = IR3 = (2.5A)(5Ω) = 12.5V 

(d) P1 = V1 Is = (5V)(2.5A) = 12.5W 
P2 = V2 Is = (2.5V)(2.5A) = 6.25 W 
P3 = V3 Is = (12.5V)(2.5A) = 31.25 W 

(e) Pdel = E I = (20V)(2.5A) = 50W 
Pdel = P1 + P2 + P3 
50W = 12.5W + 6.25W + 31.25W 

FIGURE 5.4 

Ex. 5-2 Determine RT, Is, and V2 for the circuit of Figure 5.5. 

AV 
R 
EI 

T 

s 2
25 
50 

= 
Ω 

== 

RT = R1 + R2 + R3 + R3 
= 7Ω + 4Ω + 7Ω + 7Ω 
= 25Ω 

V2 = Is R2 = (2A)(4Ω) = 8V Figure 5.5 

Ex. 5-3 Given RT and I, calculate R1 and E for the circuit of Figure 5.6. 

( )( ) 

R R R R 
k R k k 

R k k k 

E  I  R  A  V  

T 

T 

= + + 

= + + 

= − = 

= = × × =− 

1 2 3 

1 

1 

3 3 

12 4 6 
12 10 2 

6 10  12  10  72  

Ω Ω Ω 

Ω Ω Ω 

Ω 
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ET = E1 + E2 + E3 = 10V + 6V + 2V = 18V 

ET = E2 + E3 – E1 = 9V +3V – 4V = 8V 

FIGURE 5.7 Reducing series dc 
voltage sources to a single source. 

Voltage Sources in Series 
Voltage sources can be connected in series, as shown in Fig. 5.7, to increase 
or decrease the total voltage applied to a system. The net voltage is 
determined simply by summing the sources with the same polarity and 
subtracting the total of the sources with the opposite polarity. 

ET162 Circuit Analysis – Series Circuits Boylestad 8 

Kirchhoff’s Voltage Law 
Kirchhoff’s voltage law (KVL) states that the algebraic sum of the 
potential rises and drops around a closed loop (or path) is zero. 

A closed loop is any continuous path that leaves a point in one direction 
and returns to that same point from another direction without leaving the 
circuit. 

∑V = 0 
(Kirchhoff’s voltage law 
in symbolic form) 

FIGURE 5.8 Applying Kirchhoff’s 
voltage law to a series dc circuit. 

E – V1 – V2 = 0 
or E = V1 + V2 

∑Vrises = ∑Vdrops 

ET162 Circuit Analysis – Series Circuits Boylestad 9 

Ex. 5-4 For the circuit of Figure 5.9: 
a. Determine V2 using Kirchhoff’s voltage law. 
b. Determine I. 
c. Find R1 and R2. 

b. AV 
R 
VI 3 

7 
21 

2 

2 = 
Ω 

== 

Ω=== 

Ω=== 

5 
3 

15 

6
3 

18 

3 
3 

1 
1 

A 
V 

I 
VR 

A 
V 

I 
VRc. 

a.  Kirchhoff’s voltage law (clockwise direction): 
– E + V3 + V2 + V1 = 0 

or    E = V1 + V2 + V3 
and V2 = E – V1 – V3 

= 54V – 18V – 15 V = 21V 

FIGURE 5.9 ET162 Circuit Analysis – Series Circuits Boylestad 10 

Ex. 5-5 Find V1 and V2 for the network of Fig. 5.10. 

− + − = 

= 

25 15 0 
40 

1 

1 

V V  V  
and V V 

For path 1, starting at point a in a clockwise direction: 

For path 2, starting at point 
a in a clockwise direction: 

V V 
and V V 

2 

2 

20 0 
20 

+ = 

= −  FIGURE 5.10 
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− + + − = 
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60 40 30 0 
50 

V V V V 
and V V 

x 

x 

Ex. 5-6 Using Kirchhoff’s voltage law, determine the unknown voltage for 
the network of Fig. 5.11. 

6 14 2 0 
18 

V V V V 
and V V 

x 

x 

+ + − = 

= −  

FIGURE 5.11 

Ex. 5-8 For the circuit of Fig. 5.12. 
a. Determine V2 using Kirchhoff’s voltage law. 
b. Determine I. 
c. Find R1 and R3. 

a Kirchhoff s voltage law 
clockwise direction 
V V V V 

or V V 

. ' 
( ): 

54 15 18 0 
21 

2 

2 

− − − = 

= 

b I  V 
R 

V A. = = =2 

2 

21 
7 

3 
Ω 

c R  V 
I 

V 
A 

R V 
I 

V 
A

. 1 
1 

3 
318 

3 
6 15 

3 
5= = = = = =Ω Ω 

FIGURE 5.12 
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Voltage Divider Rule (VDR) The voltage divider rule (VDR) can be derived by analyzing the network 
of Fig. 5.15. 

The voltage across the resistive elements will divide as the 
magnitude of the resistance levels. RT = R1 + R2 

The voltages across the resistive elements of Fig. 5.13 are provided. Since the 
resistance level of R1 is 6 times that of R3, the voltage across R1 is 6 times that of and I = E/RT 
R3. The fact that the resistance level of R2 is 3 times that of R1 results in three times 
the voltage across R2. Finally, since R1 is twice R2, the voltage across R1 is twice Applying Ohm’s law: 
that of R2. If the resistance levels of all resistors of Fig. 5.13 are increased by the 
same amount, as shown in Fig. 5.14, the voltage levels will all remain the same. 

TT 

TT 

R 
ERR

R 
EIRV 

R 
ERR

R 
EIRV 

2 
222 

1 
111 

=⎟⎟ 
⎠ 

⎞ 
⎜⎜ 
⎝ 

⎛ 
== 

=⎟⎟ 
⎠ 

⎞ 
⎜⎜ 
⎝ 

⎛ 
== 

FIGURE 5.15 Developing the voltage divider rule. 

FIGURE 5.13 Revealing how the voltage 
will divide across series resistive elements. 

FIGURE 5.14 The ratio of the resistive values 
determines the voltage division of a series dc circuit. T 

x 
x R 

ERV = 
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( )( ) 
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R 
ER 
T 

6
15 
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3 
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== 
Ω× 

Ω× 
= 
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= 
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== 
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VV 

V 
k 

Vk 
R 

ER 
T 

24
15 

360 
1015 

45108 
15 
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3 

3 

3 

== 

Ω× 
Ω× = 

Ω 
Ω 

== 

V1 

V3 

FIGURE 5.16 
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Ex. 5-9 Using the voltage divider rule, determine the voltages V1 and V3 for 
the series circuit of Figure 5.16. Notation-Voltage Sources and Ground 

Notation will play an increasingly important role on the analysis to follow. 
Due to its importance we begin to examine the notation used throughout 
the industry. 

Except for a few special cases, electrical and electronic 
systems are grounded for reference and safety purposes. 
The symbol for the ground connection appears in Fig. 
5.25 with its defined potential level-zero volts. FIGURE 5.25 Ground potential. 

ET162 Circuit Analysis – Series Circuits-Notation FIGURE 5.26 Three ways to sketch the same series dc circuit. 

FIGURE 5.27 Replacing the special notation 
for dc voltage source with the standard symbol. 

On large schematics where space is at a premium and clarity is important, 
voltage sources may be indicated as shown in Figs. 5.27(a) and 5.28(a) 
rather than as illustrated in Figs. 5.27(b) and 5.28(b). 

FIGURE 5.28 Replacing the notation for a 
negative dc supply with the standard notation. 

In addition, potential levels may be indicated 
in Fig. 5.29, to permit a rapid check of the 
potential levels at various points in a network 
with respect to ground to ensure that the 
System is operating properly. 

FIGURE 5.29 The 
expected voltage level 
at a particular point in a 
network of the system is 
functioning properly. 

ET162 Circuit Analysis – Series Circuits-Notation Boylestad 18 

Double-Subscript Notation 
The fact that voltage is an across variable and exists between two points has 
resulted in a double-script notation that defined the first subscript as the 
higher potential. 

In Fig. 5.30(a), the two points that define the voltage across the resistor R are 
denoted by a and b. Since a is the first subscript for Vab, point a must have higher 
potential than point b if Vab is to have a positive value. If point b is at a higher 
potential than point a, Vab will have a negative value, as indicated in Fig. 5.30(b). 
The voltage Vab is the voltage at point a with respect to point b. 

ET162 Circuit Analysis – S FIGURE 5.30 Defining the sign for double-subscript notation. 19 
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Floyd

In Fig. 5.31, Va is the voltage from 
point a to ground. In this case it is 
obviously 10V since it is right across 
the source voltage E. The voltage Vb is 
the voltage from point b to ground. 
Because it is directly across the 4-Ω 
resistor, Vb = 4V. 

A single-subscript notation can be employed that provides the voltage at a 
point with respect to ground. 

FIGURE 5.31 Defining the use of single-
subscript notation for voltage levels. 

The single-subscript notation Va specifies the voltage at point a with respect 
to ground (zero volts). If the voltage is less than zero volts, a negative sign 
must be associated with the magnitude of Va. 

Vab = Va – Vb = 10V – 4V = 6V 

Single-Subscript Notation 

FIGURE 5.32 Example 5.14. 

General Comments 
A particularly useful relationship can now be established that will have 
extensive applications in the analysis of electronic circuits. For the above 
notational standards, the following relationship exists: 

Vab = Va – Vb 

Ex. 5-14 Find the voltage Vab for the conditions of Fig. 5.32. 

V V V 
V V 
V 

ab a b = − 

= − 

= −  

16 20 
4 
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Ex. 5-17 Find the voltage Vb, Vc and Vac for the network of Fig. 5.36. 

Starting at Ground, we proceed 
through a rise of 10 V to reach 
point a and then pass through a 
drop in potential of 4 V to point 
b. The result is that the meter 
will read 

Vb = +10V – 4V = 6V 

ET162 Circuit Analysis – Series Circuits-Notation Boylestad 20 

FIGURE 5.34 

Ex. 5-15 Find the voltage Va for the configuration of Fig. 5.33. 

V V V 
V V V V V 

V 

ab a b 

a  ab  b  

= − 

= + = + 

= 

5 4 
9 

V V V V V 
V V V 

ab a b =  −  =  −  −  

= + = 

20 15 
20 15 35 

( ) 
Ex. 5-16 Find the voltage Vab for the configuration of Fig. 5.34. 

FIGURE 5.33 

8 

FIGURE 5.35 The 
impact of positive and 
negative voltages on the 
total voltage drop. 

If we then proceed to point c, 
there is an additional drop of 
20V, result in 

Vc = Vb – 20V – 6V  

= 6V – 20V = – 14V 

FIGURE 5.36 

The voltage Vac can be obtained 

Vac = Va – Vc 

= 10V – (–14V) 

= 24 V 
ET162 Circuit Analysis – Series Circuits-Notation Boylestad 23 
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ies Circuits Floyd

I E E 
R 

V V V A 

and V V V V V V 
T 

ab cb c 

= 
+ 

= 
+ 

= = 

=  = −  = −  

1 2 19 35 
45 

54 
45 

12 

30 24 19 
Ω Ω 

. 
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Ex. 5-18 Determine Vab, Vcb and Vc for the network of Fig. 5.37. 

FIGURE 5.38 Redrawing the circuit of Fig. 
5.37 using dc voltage supply symbols. 

I 
V 

A 

V  I  R  A  V  
V  I  R  A  V  
V E V 

ab 

cb 

c 

= = 

= = = 

= −  = −  = −  

=  = −  

54 
45 

12 

12 25 30 
12 20 24 

19 

2 

1 

1 

Ω 

Ω 

Ω 

. 

( .  )(  )  
( .  )(  )  

The other approach is to redraw the network as shown 
in Fig. 5.37 to clearly establish the aiding effect of E1 
and E2 and then solve the resulting series circuit. 

There are two ways to approach this problem. The first is that 
there is a 54-V drop across the series resistors R1 and R2. 

FIGURE 5.3 

Redrawing the network with standard 
battery symbol will result in the 
network of Fig.5.40. Applying the 
voltage divider rule, 

FIGURE 5.40 

Ex. 5-19 Using the voltage divider rule, determine the voltages V1 and V2 for of 
Fig. 5.39. 

V 
R E  

R R 
V 

V 

V 
R E  

R R 
V 

V 

1 
1 

1 2 

2 
2 

1 2 

4  24  
4 2 

16 

2  24  
4 2 

8 

= 
+ 

= 
+ 

= 

= 
+ 

= 
+ 

= 

(  )(  )  

(  )(  )  

Ω 

Ω Ω 

Ω 

Ω Ω 

FIGURE 5.39 
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FIGURE 5.40 

Ex. 5-20 For the network of Fig. 5.40: 
a. Calculate Vab. 
b. Determine Vb. 
c. Calculate Vc. 

a Voltage divider rule 

V 
R E  
R 

V 
Vab 

T 

. : 
(  )(  )

= = 
+ + 

= +1 2  10  
2 3 5 

2
Ω 

Ω Ω Ω 

b Voltage divider rule 

V V V 
R R E 

R 
V 

V 

or V V V E V 
V V V 

b R R 
T 

b a ab ab 

. : 
( ) 

(  )(  )  

= + = 
+ 

= 
+ 

= 

= − = − 

= − = 

2 3 

2 3 

3  5  10  
10 

8 

10 2 8 

Ω Ω 

Ω 

c. Vc = ground potential = 0V 
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Ideal Voltage Sources vs. Non-ideal Voltage Sources 

Every source of voltage, whether a generator, battery, or laboratory supply as 
shown in Fig. 5.41(a), will have some internal resistance (know as the non-
ideal voltage source). The equivalent circuit of any source of voltage will 
therefore appear as shown in Fig. 5.41(b). 

FIGURE 5.41 (a) Sources of dc voltage; (b) equivalent circuit. 
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In all the circuit analyses to this point, the ideal voltage source (no internal 
resistance) was used shown in Fig. 5.42(a). The ideal voltage source has no 
internal resistance and an output voltage of E volts with no load or full load. 
In the practical case [Fig. 5.42(b)], where we consider the effects of the 
internal resistance, the output voltage will be E volts only when no-load (IL = 
0) conditions exist. When a load is connected [Fig. 5.42(c)], the output 
voltage of the voltage source will decrease due to the voltage drop across the 
internal resistance. 

FIGURE 5.42 Voltage source: (a) ideal, Rint = 0 Ω; (b) Determining VNL; (c) determining Rint. 
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Voltage regulation VR V V 
V 

NL FL 

FL 

( )%  = 
− 

× 100% 

VR R 
RL 

% int = × 100% FIGURE 5.43 Defining voltage 
regulation. 

Voltage Regulation 

For any supply, ideal conditions dictate that for the range of load demand (IL), 
the terminal voltage remain fixed in magnitude. By definition, the voltage 
regulation (VR) of a supply between the limits of full-load and no-load 
conditions (Fig. 5.43) is given by the following: 

For ideal conditions, VR% = VNL and 
VR% = 0. Therefore, the smaller the 
voltage regulation, the less the variation in 
terminal voltage with change in load. 

It can be shown with a short derivation that 
the voltage regulation is also given by 

ET162 Circuit Analysis – Series Circuits-Notation Boylestad 29 

Ex. 5-21 Calculate the voltage regulation of a supply having the characteristics 
of Fig. 5.44. 

VR V V 
V 
V V 

V 

NL FL 

FL 

% % 

% 

% % 

= 
− 

× 

= 
− 

× 

= × = 

100 

120 100 
100 

100 

20 
100 

100 20 

VR R 
RL 

% % 

. 
% 

. %  

int = × 

= × 

= 

100 

19 48 
500 

100 

39  

Ω 

Ω 

FIGURE 5.44 

FIGURE 5.45 

Ex. 5-22 Determine the voltage regulation of the supply of Fig. 5.45. 

Rint = 19.48 Ω 
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HW 5-24 Determine the values of the unknown resistors in Fig. 5.108 using the 
provided voltage levels. 

Homework 5: 1, 2, 4, 5,7, 10, 11, 15, 16, 22, 23, 24, 26, 30, 41, 43 

Figure 5.108 Problem 24. 
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Parallel Circuits – Introduction & Elements 

A circuit configuration in which the elements have two points in 
common 
Two elements, branches, or networks are in parallel if they have 
two points in common. 

FIGURE 6.1 Parallel 
elements. 

In Fig. 6.1, for example, 
elements 1 and 2 have 
terminals a and b in common; 
they are therefore in parallel. 

Parallel Circuits – Parallel Elements 

In Fig. 6.2, all the elements are in parallel because they satisfy the 
previous criterion. Three configurations provided to demonstrate how the 
parallel networks can be drawn. 

Figure 6.2 Different ways in which three parallel elements may appear. 
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Parallel Circuits – Total Conductance Parallel Circuits – Parallel Elements 

In Fig. 6.3, elements 1 and 2 are in parallel because they have terminals a 
and b in common. The parallel combination of 1 and 2 is then in series with 
element 3 due to the common terminal point b. 

In Fig. 6.4, elements 1 and 2 are in series due to the common point a, but 
the series combination of 1 and 2 is in parallel with elements 3 as defined by 
the common terminal connections at a and b. 

Figure 6.3 Network in which 1 and 2 are in parallel 
and 3 is in series with the parallel combination of 1 and 2. 

Figure 6.4 Network in which 1 and 2 are in 
series and 3 is in parallel. 

For parallel elements, the total conductance is the sum of the 
individual conductances. 

6 

GT = G1 + G2 + G3 + · · · + GN 

Figure 6.5 Determining the total conductance of parallel conductances. 

ET162 Circuit Analysis – Parallel Circuits Boylestad 

Parallel Circuits – Total Resistance Ex. 6-1 Determine the total conductance and resistance for the parallel network 
of Figure 6.7. 

Since G = 1/R, the total resistance for the network can be 
determined by direct substitution into following equation. 

Figure 6.6 Determining the total resistance of parallel resistors. 

NT RRRRR 
11111 

321 

+⋅⋅⋅+++= 
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FIGURE 6.7 
G G G 

S S S 

T = + = + 

= + = 

1 2 
1 

3 
1 

6 
0 333 0167 0 5 

Ω Ω 

. . . 

1 1 
and RT = = = 2Ω

GT 0.5S 

Ex. 6-2 Determine the effect on the total conductance and resistance and 
resistance of the network of Fig. 6.7 if another resistor of 10 Ω were added in 
parallel with the other element. 

1GT = 0.5S + = 0.5S + 0.1S = 0.6 S 
10Ω 

Ω≅== 667.1
6.0
11 

SG
R 

T 
T 
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Ex. 6-4 a. Find the resistance of the network of Fig. 6.9. 
b. Calculate the total resistance for the network of Fig. 6.10. 

Ex. 6-3 Determine the total resistance for the network of Fig. 6.8. 

FIGURE 6.8 

Ω== 053.1
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1 1 1 1 
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T 

= + + 
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= 
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. . . 

. 
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Figure 6.9 Example 6-4: three parallel resistors 
Figure 6.10 Example 6-4: four 
parallel resistors of equal value. 

Ω= 
Ω 

== 

Ω= 
Ω 

== 

5.0
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2)( 

4 
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12)( 

N 
RRb 

N 
RRa 

T 

T 

The total resistance of parallel resistors is always less than the value of the smallest resistor. 

Parallel Circuits – Total Resistance 

For two parallel resistors, we write 

21 

12 

21 

111 
RR 
RR 

RRRT 

+ 
=+= 

(1) 

R1 R2 The total resistance of two 
and RT = parallel resistors is the product 

R + R1 2 of the two divided by their sum. 

For three parallel resistors, the equation for RT becomes 

Ex. 6-5 Repeat Example 6.1 using Eq.(1). 

R R R  
R RT = 

+ 
= 

+ 
= =1 2 

1 2 

3 6 
3 6 

18 
9 

2(  )(  )Ω Ω 

Ω Ω 

Ω 
Ω 
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Ex. 6-6 Repeat Example 6.3 using Eq.(2). 
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Ex. 6-7 Calculate the total resistance of the parallel network of Fig. 6.11. 

Figure 6.11 
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Ex. 6-8 Determine the value of R2 in Fig. 6.12 to establish a total resistance 
of 9 kΩ. 

Figure 6.12 

R 

R R 

R R R 

T 

T 

= 
+ 

+ = 

1 
1 1 

1 1 1 
1 2 

1 2 

1 1 1 

1 
9 

1 
12 

0 028 10 

2 1 

3 

R R R 

k k 
S 

T 

= − 

= − 

= × − 

Ω Ω 

. R k k2 35 7 36 = ≅. Ω Ω 

ET162 Circuit Analysis – Parallel Circuits Boylestad 16 

4 



 

 

 

 

 

2 Circuit Analysis Parallel Circuits II

Ex. 6-9 Determine the values of R1, R2, and R3 in Fig. 6.13 if R2 = 2R1 and 
R3 = 2R2 and the total resistance is 16 kΩ. 
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Ex. 6-10 a. Determine the total resistance of the network of Fig. 6.14. 
b. What is the effect on the total resistance of the network of Fig.6.14 if 

additional resistor of the same value is added, as shown in Fig.6.15? 
c. What is the effect on the total resistance of the network of Fig.6.14 if 

very large resistance is added in parallel, as shown in Fig.6.16? 
d. What is the effect on the total resistance of the network of Fig.6.14 if 

very small resistance is added in parallel, as shown in Fig.6.17? 
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Figure 6.16 Figure 6.17 
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Parallel Circuits Analysis and Measurement 

The network of Fig.6.18 is the simplest of parallel circuits. All the 
elements have terminals a and b in common. 

FIGURE 6.18 Parallel network. 

The voltage across parallel elements is the same. 
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Boylestad 2

For single–source parallel networks, the source current (Is) is equal 
to the sum of the individual branch current. 
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The power dissipated by the 
resistors and delivered by the 
source can be determined from. 
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Ex. 6-11 For the parallel network of Fig. 6.19. 
a. Calculate RT. 
b. Determine Is. 
c. Calculate I1 and I2, and demonstrate that Is = I1 + I2. 
d. Determine the power to each resistive load. 
e. Determine the power delivered by the source, and compare it to the 

total power dissipated by the resistive elements. 
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FIGURE 6.19 
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FIGURE 6.20 

Ex. 6-12 Given the information provided in Fig.6.20. 
a. Determine R3. 
b. Calculate E. 
c. Find Is & I2. 
d. Determine P2. 
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KirchhoffKirchhoff’’ss Current LawCurrent Law 

∑ Ientering = ∑ Ileaving 

Kirchhoff’s current law (KCL) states that the algebraic sum of the 
current entering and leaving an area, system, or junction is zero. 

FIGURE 6.21 Introduction to KCL: 

The sum of the currents entering an area, system, or junction must 
equal to the sum of the currents leaving the area, system, or junction. 

FIGURE 6.22 Demonstrating KCL: 

Ex. 6-13 Determine the currents Is and I4 of Fig. 6.23 using Kirchhoff’s 
current law. 
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FIGURE 6.23 
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Ex. 6-14 Determine the currents I1, I3, I4, and I5 for the network of Fig. 6.24. 
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Ex. 6-15 Determine the currents I3and I5 of Fig. 6.25 through applications of 
Kirchhoff’s current law. 
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Ex. 6-16 Find the magnitude and direction of the currents I3, I4, I6, and I7 for 
the network of Fig.6.26. 

Current Divider Rule (CDR) 

FIGURE 6.26 

I7 = I1 = 10 A 
I3 = 2 A 
I4 = 4 A 
I6 = 2 A 
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For two parallel elements of equal value, the current will divide equally. 

For parallel elements with different values, the smaller the resistance, 
the greater the share of input current. 

For parallel elements with different values, the current will split with a 
ratio equal to the inverse of their resistor values. 

FIGURE 6.27 Demonstrating how current will divide between unequal resistors. 
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FIGURE 6.28 Deriving the current divider rule. 

For networks in which only the resistor values are given along with the 
input current, the current divider rule should be applied to determine the 
various branch currents. It can be derived using the network of Fig. 6.28. 
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For the particular case of two parallel resistors, as shown in Fig. 6.29. 

I R I  
R R2 

1 

1 2 

= 
+ 

In words, for two parallel branches, the current through either branch is 
equal to the product of the other parallel resistor and the input current 
divided by the sum of the two parallel resistances. 

FIGURE 6.29 Developing an equation for 
current division between two parallel resistors. 
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 ysis Parallel Circuits II Floyd – 

Figure 6.32 

Ex. 6-19 Determine the magnitude of the currents I1, I2, and I3 for network of 
Fig. 6.32. 
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Ex. 6-17 Determine the current I2 for the network of Fig.6.30 using the current 
divider rule. 
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Ex. 6-18 Find the current I1 for the network of Fig.6.31. 

FIGURE 6.31 
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Ex. 6-19 Determine the resistance R1 to effect the division of current in Fig. 6.33. 
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ET162 Circuit Analysis Parallel Circuits II Floyd

Current seeks the path of least resistance. Voltage Sources in Parallel 
1. More current passes through the smaller of two parallel resistors. 

2. The current entering any number of parallel resistors divides into 
these resistors as the inverse ratio of their ohmic values. This 
relationship is depicted in Fig.6.33. 

Voltage sources are placed in parallel as shown in Fig. 6.34 only if they 
have same voltage rating. 

Figure 6.34 Parallel voltage sources. 

ET162 Circuit Analysis – Parallel Circuits Boylestad 3837 –Figure 6.33 Current division through parallel branches. 

HW 6-29 Based solely on the resistor values, determine all the currents for the 
configuration in Fig. 6.99. Do not use Ohm’s law. 

Homework 6: 1, 4, 7, 10, 18, 20, 23, 28, 29 

Figure 6.99 Problem 29. 

ET162 Circuit Analysis – Parallel Circuits Boylestad 40 

If two batteries of different terminal voltages were placed in parallel both 
would be left ineffective or damaged because the terminal voltage of the 
larger battery would try to drop rapidly to that of the lower supply. 

Consider two lead-acid car batteries of different terminal voltage placed in 
parallel, as shown in Fig. 6. 35. 
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Figure 6.35 Parallel batteries of different terminal voltages. 
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Series-Parallel Networks – 
Reduce and Return Approach 

Series-parallel networks are networks 
that contain both series and parallel 
circuit configurations 

For many single-source, series-parallel 
networks, the analysis is one that works 
back to the source, determines the 
source current, and then finds its way 
to the desired unknown. 

FIGURE 7.1 Introducing the 
reduce and return approach. 
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FIGURE 7.2 Introducing the block diagram approach. 

Series-Parallel Networks 
Block Diagram Approach 

The block diagram 
approach will be 
employed throughout 
to emphasize the fact 
that combinations of 
elements, not simply 
single resistive 
elements, can be in 
series or parallel. 
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FIGURE 7.3 

Ex. 7-1 If each block of Fig.7.3 were a single resistive element, the network 
of Fig. 7.4 might result. 
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Ex. 7-2 It is also possible that the blocks A, B, and C of Fig. 7.2 contain the 
elements and configurations in Fig. 7.5. Working with each region: 
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Ex. 7-3 Another  possible variation of Fig. 7.2 appears in Fig. 7.7. 
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FIGURE 7.8 
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Series-Parallel Networks - Descriptive Examples 

Ex. 7-4 Find the current I4 and the voltage V2 for the network of Fig. 7.2 . 
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FIGURE 7.10 FIGURE 7.11 
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Ex. 7-5 Find the indicated currents and the voltages for the network of Fig. 7.12 . 

FIGURE 7.13 

(  )(  )  

(  )(  )  
Ω= 

Ω 
= 

Ω+Ω 

ΩΩ 
== 

Ω= 
Ω 

= 
Ω+Ω 

ΩΩ 
== 

Ω= 
Ω 

== 

8.4
20 

96 
128 
128 

2.1
5 

6 
23 
23 

3 
2 

6 

5//4 

3//2//1

2//1

RR 

RR 

N 
RR 

B 

A 

FIGURE 7.12 

ET162 Circuit Analysis – Series and parallel networks Boylestad 11 

3 



 

BoylestadET162 Circuit Analysis – Series and parallel networks 12 

AV 
R 
EI 

RRR 

T 
s 

T 

4 
6 
24 

68.42.1
5//43//2//1

= 
Ω 

== 

Ω=Ω+Ω= 

+= 

(  )(  )  
(  )(  )  VARIV 

VARIV 

s 

s 

2.198.44 
8.42.14 

5//42 

3//2//11 

=Ω== 

=Ω== 

FIGURE 7.13 

AV 
R 
V 

R 
VI 

AV 
R 
VI 

8.0
6 
8.4

4.2
8 

2.19

2 

1 

2 

2 
2 

4 

5 
4 

= 
Ω 

=== 

= 
Ω 

== 

Ex. 7-6 a. Find the voltages V1, V2, and Vab for the network of Fig. 7.14. 
b. Calculate the source current Is. 
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Applying Kirchhoff s voltage law around 
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FIGURE 7.15 
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b. By Ohm s law 
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Applying Kirchhoff’s current law, 
Is = I1 + I3 = 1.5A + 1.5A = 3A 
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Ex. 7-7 For the network of Fig. 7.16, determine the voltages V1 and V2 and current I. 

FIGURE 7.17 
FIGURE 7.16 
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Ex. 7-9 Calculate the indicated currents and voltage of Fig.7.17. 

FIGURE 7.17. 
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Is = I5 + I6 = 3 mA +4.35 mA = 7.35 mA 

9 kΩ 
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Ex. 7-10 This example demonstrates the power of Kirchhoff’s voltage law by 
determining the voltages V1, V2, and V3 for the network of Fig.7.18. 

FIGURE 7.17. FIGURE 7.18. 
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Series-Parallel Networks – Ladder Networks 

A three-section ladder appears in Fig. 7.19. 

FIGURE 7.19. Ladder network. 
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FIGURE 7.20. 

FIGURE 7.21. 
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HW 7-26 For the ladder network in Fig. 7.86: 
a Determine RT. 
b. Calculate I. 
c. Find I8. 

Homework 7: 2, 4, 7, 11, 15, 25, 26 

Figure 7.86 Problem 26. 
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Introduction to Methods of Analysis 

The circuits described in the previous chapters had only one source 
or two or more sources in series or parallel present. The step-by-step 
procedure outlined in those chapters cannot be applied if the sources 
are not in series or parallel. 

Methods of analysis have been developed that allow us to approach, in a 
systematic manner, a network with any number of sources in any 
arrangement. Branch-current analysis, mesh analysis, and nodal 
analysis will be discussed in detail in this chapter. 
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FIGURE 8.1 
Current source within 
the transistor 
equivalent circuit. 
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Ex. 8-2 Find the voltage Vs and the currents I1 and I2 for the network of  Fig. 8.3. 

FIGURE 8.3 

Applying Kirchhoff s current law 
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Ex. 8-3 Determine the current I1 and voltage Vs for the network of Fig. 8.4. 

FIGURE 8.4 

The voltage V is 
V  I  R  A  V  

and applying Kirchhoff s voltage law 
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Current Sources 

The interest in the current sources is due primarily to semiconductor 
devices such as the transistor. In the physical model (equivalent circuit) of 
a transistor used in the analysis of transistor networks, there appears a 
current source as indicated in Fig. 8.1. 

A current source determines the current in the branch in which it is 
located and the magnitude and polarity of the voltage across a current 
source are a function of the network to which it is applied. 

Ex. 8-1 Find the source voltage Vs and the current I1 for the circuit  of Fig. 7.2. 

FIGURE 8.2 

I1 = I = 10 mA 
Vs = V1 = I1R1 

= (10 mA)(20 kΩ) 
= 200 V 
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ircuit Analysis Methods of Analysis B

Source Conversions 
All sources-whether they are voltage or current-have some internal 
resistance in the relative positions shown in Fig. 8.5 and 8.6. For the 
voltage source, if Rs = 0 Ω or is so small compared to any series resistor 
that it can be ignored, then we have an “ideal” voltage source. For the 
current source, if Rs = ∞ Ω or is large enough compared to other parallel 
elements that it can be ignored, then we have an “ideal” current source. 

The equivalent sources, as far as terminals a and b are concerned, are 
repeated in Fig. 8.7 with the equations for converting in either direction. 
Note, as just indicated, that the resistor Rs is the same in each source; only 
its position changes. The current of the current source or the voltage of the 
voltage source is determined using Ohm’s law and the parameters of the 
other configuration. 

FIGURE 8.6 FIGURE 8.5 
ET162 Circuit Analysis – Methods of Analysis Boylestad 8 

FIGURE 8.6 Source conversion 
ET162 Circuit Analysis – Methods of Analysis Boylestad 3 

Ex. 8-4 a. Convert the voltage source of Fig. 8.8 (a) to a current source, and calculate the   
current through the 4-Ω load for each source. 
b. Replace the 4-Ω load with a 1-kΩ load, and calculate the current IL for the voltage source. 
c. Replace the calculation of part (b) assuming that the voltage source is ideal (Rs = 0 Ω) because 
RL is so much larger than Rs. Is this one of those situations where assuming that the source is 
ideal is an appropriate approximation? 

E 6V
a Fig  . .  a I L = = = 1 A. 88 (  ):  
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R I  (2 Ω)(  3 A)Fig . .  b I L = s = = 1 A88 (  ):  
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Ex. 8-5 a. Convert the current source of Fig. 8.9(a) to a voltage source, and find the load 
current for each source. 
b. Replace the 6-kΩ load with a 10-kΩ load, and calculate the current IL for the current source. 
c. Replace the calculation of part (b) assuming that the vcurrent source is ideal (Rs = ∞Ω) 
because RL is so much smaller than Rs. Is this one of those situations where assuming that the 
source is ideal is an appropriate approximation? 

FIGURE 8.9 
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Ex. 8-6 Replace the parallel current sources of Fig. 8.10 and 8.11 to a single current source. 

FIGURE 8.11 

FIGURE 8.10 
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FIGURE 8.12 

Ex. 8-7 Reduce the network of Fig. 8.12 to a single current source, and calculate the current 
through RL. 
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Ex. 8-8 Determine the currentI2 in the network of Fig. 8.13. 

FIGURE 8.13 
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Current Sources in Series 

The current through any branch of a network can be only single-valued. 
For the situation indicated at point a in Fig. 8.14, we find by application of 
Kirchoff’s current law that the current leaving that point is greater than 
entering-an impossible situation. Therefore, 

Current sources of different current 
ratings are not connected in parallel. 

FIGURE 8.14 
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Branch-Current Analysis 

We will now consider the first in a series of methods for solving networks 
with two or more sources. 

1. Assign distinct current of arbitrary direction to each branch of the network. 

2. Indicate the polarities for each resistor as determined by the assumed 
current direction. 

3. Apply Kirchhoff’s voltage law around each closed, independent loop of the 
network. 

4. Apply Kirchhoff’s current law at the minimum number of nodes that will 
include all the branch currents of the network. 

5. Solve the resulting simultaneous linear equations for assumed branch 
currents. 

FIGURE 8.15 Determining the number of independent closed loops. 

FIGURE 8.16 Determining the number of applications of Kirchhoff’s current law required. 
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Ex. 8-9 Apply the branch-current method to the network of Fig. 8.17. 

FIGURE 8.17 
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Mesh Analysis 
The second method of analysis to be described is called mesh analysis. The term 
mesh is derived from the similarities in appearance between the closed loops of a 
network and wire mesh fence. The mesh-analysis approach simply eliminates the 
need to substitute the results of Kirchhoff’s current law into the equations derived 
from Kirchhoff’s voltage law. The systematic approach outlined below should be 
followed when applying this method. 

1. Assign a distinct current in the clockwise direction to each independent, closed 
loop of the network. It is not absolutely necessary to choose the clockwise 
direction for each loop current. 

2. Indicate the polarities with each loop for each resistor as determined by the 
assumed current direction of loop current for that loop. 

3. Apply Kirchhoff’s voltage law around each closed loop in the clockwise 
direction. 

4. Solve the resulting simultaneous linear equations for assumed branch 
currents. 
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Ex. 8-13 Using mesh analysis, determine the currents of the network of Fig.8.21. 

FIGURE 8.21 
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loop V I I I 
loop I I I V 
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loop V I I 
loop I I V 
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Ex. 8-10 Consider the same basic network as in Example 8.9 of the preceding 
dection, now appearing in Fig.8.18. 
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FIGURE 8.18 
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Ex. 8-11 Find the current through each branch of the network of Fig.8.19. 

loop V I I I V 
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FIGURE 8.19 

The current in the 6Ω resistor and 10V source 
for loop 1 is 

I2 – I1 = 2A – 1A = 1A 
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Ex. 8-12 Find the branch currents of the network of Fig.8.20. 
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FIGURE 8.20 

The current in the 4Ω resistor and 4V source for 
loop 1 is 

I1 – I2 = – 2.182A – (– 0.773A) 
= – 1.409A 
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Nodal Analysis 

We will employ Kirchhoff’s current law to develop a method referred to as nodal 
analysis. A node is defined  as a junction of two or more branches. Since a point of 
zero potential or ground is used as a reference, the remaining nodes of the network 
will all have a fixed a fixed potential relative to this reference. For a network of N 
nodes, therefore, there will exist (N – 1) nodes. 

1. Determine the number of nodes within the network. 

2. Pick a reference node, and label each remaining node with a subscripted value 
of voltage: V1, V2, and so on. 

3. Apply Kirchhoff’s current law at each node except the reference.  Assume that 
all  unknown currents leave the node for each application of Kirchhoff’s 
current law. 

4. Solve the resulting equations for the nodal voltages. 

ET162 Circuit Analysis – Methods of Analysis Boylestad 24 

Ex. 8-15 Apply nodal analysis to the network of Fig.8.23. 

FIGURE 8.23 
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Ex. 8-14 Apply nodal analysis to the network of Fig.8.22. 

FIGURE 8.22 
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FIGURE 8.24 

Ex. 8-16 Determine the nodal voltages for the network of Fig.8.24. 
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Ex. 8-17 Determine the nodal voltages V1 and V2 Fig.8.25 using the concept of a 
supernode. 

Supernode V V V 

Nodes V V V  V  V  V  V  V 

: 

, :  

1 2 

1 2 1 2 1 2 

12 

1 2  6  
10 4 10 2 

4 0 

− = 

− + 
− 

+ + 
− 

+ + = 
Ω Ω Ω Ω 

V V  
V V V V V V 

so that 
V V  
V V 

1 2 

1 2 1 2 1 2 

1 2 

1 2 

12 
120 2 2 5 2 2 10 80 0 

12 
5  10  40  

− = 

− + − + + − + + = 

− = 

+ = 

FIGURE 8.25 

V V 

V V V V 

1 

2 1 

12 1 
40 10 
1 1 
5 10  

120 40 
10 5 

10 667 

12 1333 

= 

− 

− 
= 

− −  

− −  
= 

= − = − 

( ) 
( )  

. 

. 
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HW 8-31 Using mesh analysis, determine the current I3 for the network in Fig. 8.119. 
Compare your answer to the solution of Problem 18. 

Homework 8: 2, 4, 6, 7, 8, 19, 22, 23, 25, 31 

Figure 8.119 Problem 31. 
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Introduction to Network Theorems 

This chapter will introduce the important fundamental 
theorems of network analysis. Included are the superposition, 
Thevenin’s, Norton’s, and maximum power transfer theorems. 
We will consider a number of areas of application for each. A 
through understanding of each theorems will be applied 
repeatedly in the material to follow. 
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Superposition Theorem 

The superposition theorem can be used to find the solution to networks 
with two or more sources that are not in series or parallel. The most 
advantage of this method is that it does not require the use of a 
mathematical technique such as determinants to find the required voltages 
or currents. 

The current through, or voltage across, an element in a linear bilateral 
network is equal to the algebraic sum of the current or voltages produced 
independently by each source. 

Figure 9.1 reviews the various 
substitutions required when 
removing an ideal source, and 
Figure 9.2 reviews the 
substitutions with practical 
sources that have an internal 
resistance. 

FIGURE 9.1 Removing the effects of practical sources 

Number of networks Number of 
= 

to be analyzed independent sources 

FIGURE 9.2 Removing the effects of ideal sources 

ET162 Circuit Analysis – Network Theorems Boylestad 4 ET162 Circuit Analysis – Network Theorems Boylestad 5 

I E 
R 

V A1 
1 

30 
6 

5'' = = = 
Ω 

I I I 
A A 
A 

1 1 1 

0 5 
5 

= + 

= + 

= 

' '' 

Ex. 9-1 Determine I1 for the network of  Fig. 9.3. 

FIGURE 9.3 

FIGURE 9.4 

I A1 0' = 
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R R R R 

I E 
R 

V A 

T 

T 

= + 

= + 

= + = 

= = = 

1 2 3 

1 

24 12 4 
24 3 27 

54 
27 

2 

/ /  
/ /Ω Ω Ω 

Ω Ω Ω 

Ω 

Ex. 9-2 Using superposition, determine the current through the 4-Ω resistor of  
Fig. 9.5. Note that this is a two-source network of the type considered in chapter 8. 

FIGURE 9.5 

FIGURE 9.6 

( )( )
I R I  

R R 
A A 

A3 
2 

2 3 

12 2 
12 4 

15' .= 
+ 

= 
+ 

= 
Ω Ω 
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R R R R 

I E 
R 

V A 

T 

T 

= + = + = + = 

= = = 

3 1 2 

3 
2 

4  24  12  4  8  12  
48 
12 

4 

/ /  /  /  

'' 

Ω Ω Ω Ω Ω Ω 

Ω 

I I I A A A 
direction of I 

3 3 3 

3 

4  15  2  5  = − = − = '' ' 

'' 

. . 
( ) 

FIGURE 9.7 

FIGURE 9.8 
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The total current through the 
resistor Fig is 

I I I A A A 
6  912  

2 6 82 2 2 

Ω ( . ) 
' '' = + = + = 

FIGURE 9.12 

10 

b The  power to the resistor is 
Power I R A W 

The calculated power to the resistor 
due to each source misu g the principle 
of erposition is 

P I R A W 
P I R A W 

P P W W 
because A A A 

. 
(8 ) ( ) 

,  sin  
sup , 

( )  (  )  (  )  
( )  (  )  (  )  

(  )  (  )  (8  )  

' 

'' 

6 
6  384  

6 

2  6  24  
6 6 216 

240 384 
2 6 

2 2 

1 2 
2 2 

2 2 
2 2 

1 2 
2 2 2 

Ω 

Ω 

Ω 

Ω 

Ω 

= = = 

= = = 

= = = 

+ = ≠ 

+ ≠ 

FIGURE 9.13 

Ex. 9-4 Using the principle of superposition, find the current through the 12-kΩ 
resistor of  Fig. 9.13. 

FIGURE 9.14 

I R I  
R R 

k  mA  
k k 

mA2 
1 

1 2 

6 6 
6  12  

2' (  )(  )
= 

+ 
= 

+ 
= 

Ω 

Ω Ω 
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Ex. 9-3 a. Using superposition, find the current through the 6-Ω resistor of  Fig. 
9.9. b. Determine that superposition is not applicable to power levels. 

FIGURE 9.9 

FIGURE 9.11 

FIGURE 9.10 

a considering that the effect of the V source Fig 

I E 
R 

E 
R R 

V 
A 

considering that the effect of the A source Fig 

I 
R I  

R R 
A 

A 

T 

.  (  .  .  ):  

(  .  .  ):  
(  )(  )  

' 

'' 

36 9 10 
36 

12 6 
2 

9  9  11  
12 9 
12 6 

6 

2 
1 2 

2 
1 

1 2 

= = 
+ 

= 
+ 

= 

= 
+ 

= 
+ 

= 

Ω Ω 

Ω 

Ω Ω 
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considering that the effect of the V voltage source Fig 

I E 
R R 

V 
k k 

mA 

9  9  15  
9 

6  12  
052 

1 2 

(  .  .  ):  

. '' = 
+ 

= 
+ 

= 
Ω Ω 

12 

FIGURE 9.15 

Since I and I have the same direction through R 
the desired current is the sum of the two 

I  I  I  mA  mA  mA  

2 2 2 

2 2 2 2  05  2  5  

' '' 

' '' 

, 
: 

. .= + = + = 

FIGURE 9.16 

Ex. 9-5 Find the current through the 2-Ω resistor of the network of  Fig. 9.16. The 
presence of three sources will result in three different networks to be analyzed. 

FIGURE 9.18 FIGURE 9.19 

FIGURE 9.17 
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considering the effect of the 12V source (Fig .  .  917 ):  
E 12V

I ' = 1 = = 2 A1 R1 + R2 2 Ω + 4 Ω 

considering that the effect of the 6V source (Fig.  .  9  18  ):  
E 6V

I '' = 2 = = 1 A1 R1 + R2 2Ω + 4 Ω 

considering the effect of the 3 A source (Fig.  .  919  ):  
R I  (4Ω)(  3 A)''' 2I = = = 2 A1 R1 + R2 2Ω + 4Ω 

4 

Thevenin’s Theorem 

FIGURE 9.21 Thevenin equivalent circuit 

Any two-terminal, linear bilateral dc 
network can be replaced by an 
equivalent circuit consisting of a 
voltage source and a series resistor, 
as shown in Fig. 9.21. 

FIGURE 9.22 The effect of 
applying Thevenin’s theorem. 
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The total current through the resistor 
appears in Fig and 

I I I I A A A A 

2 
9 20  

1 2 2 11 1 1 1 

Ω 

. .  ,  
'' ''' ' = + − = + − = 

FIGURE 9.20 
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FIGURE 9.23 Substituting the Thevenin equivalent circuit for a complex network. 

1. Remove that portion of the network across which the Thevenin equivalent 
circuit is to be found. In Fig. 9.23(a), this requires that the road resistor RL be 
temporary removed from the network. 

2. Make the terminals of the remaining two-terminal network. 

3. Calculate RTH by first setting all sources to zero (voltage sources are replaced 
by short circuits, and current sources by open circuit) and then finding the 
resultant resistance between the two marked terminals. 

4. Calculate ETH by first returning all sources to their original position and 
finding the open-circuit voltage between the marked terminals. 

5. Draw the Thevenin equivalent circuit with the portion of the circuit previously 
–removed replaced between the terminals of the equivalent circuit. 

Ex. 9-6 Find the Thevenin equivalent circuit for the network in the shaded area of 
the network of Fig. 9.24. Then find the current through RL for values of 2Ω, 10Ω, 
and 100Ω. 

FIGURE 9.24 FIGURE 9.25 Identifying the terminals of particular 
importance when applying Thevenin’s theorem. 

R R RTH = 

= 
+ 

= 

1 2 

3 6 
3 6 

2 

/ /  
(  )(  )Ω Ω 

Ω Ω 

Ω 
FIGURE 9.26 Determining RTH for the network of Fig. 9.25. 
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I 
E 

R R 

R I 
V 

A 

R I 
V 

A 

R I 
V 

A 

L 
TH 

TH L 

L L 

L L 

L L 

= 
+ 

= = 
+ 

= 

= = 
+ 

= 

= = 
+ 

= 

2 
6 

2 2 
15 

10 
6 

2  10  
05  

100 
6 

2 100 
0 059  

Ω 
Ω Ω 

Ω 
Ω Ω 

Ω 
Ω Ω 

: . 

: . 

: . 

FIGURE 9.27 

R R E  
R R 

V VTH = 
+ 

= 
+ 

=2 1 

2 1 

6 9 
6 3 

6(  )(  )Ω 

Ω Ω 

FIGURE 9.29 Substituting the Thevenin equivalent 
circuit for the network external to RL in Fig. 9.23. 

FIGURE 9.28 

Ex. 9-7 Find the Thevenin equivalent circuit for the network in the shaded area of 
the network of Fig. 9.30. 

R R RTH = + 

= + 

= 

1 2 

4 2 
6 
Ω Ω 

Ω 

FIGURE 9.30 FIGURE 9.31 

FIGURE 9.32 
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FIGURE 9.33 

FIGURE 9.34 Substituting the Thevenin 
equivalent circuit in the network external 
to the resistor R3 of Fig. 9.30. 

V I R R V 

E  V  I  R  I  R  
A 

TH 

2 2 2 2 

1 1 1 1 

0 0 

12 4 
48 

= = = 

= = = 

= 

= 

( )  

(  )(  )Ω
Ω 
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FIGURE 9.35 

Ex. 9-8 Find the Thevenin equivalent circuit for the network in the shaded area of 
the network of Fig. 9.35. Note in this example that there is no need for the section 
of the network to be at  preserved to be at the “end” of the configuration. 

R R RTH = 

= 
+ 

= 

1 2 

6 4 
6 4 

2 4  

/ /  
(  )(  )  

. 

Ω Ω 

Ω Ω 

Ω 

FIGURE 9.37 

FIGURE 9.36 

FIGURE 9.38 

E R E  
R R 

V 

V 

TH = 
+ 

= 
+ 

= 

1 1 

1 2 

6 
6 4 
4 8  

( )(8 ) 

. 

Ω 

Ω Ω 

FIGURE 9.40 Substituting the Thevenin 
equivalent circuit in the network external 
to the resistor R4 of Fig. 9.35. 

FIGURE 9.39 
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Ex. 9-9 Find the Thevenin equivalent circuit for the network in the shaded area of 
the network of Fig. 9.41. 

R R R R RTH = + 

= + 

= + = 

1 3 2 4 

6  3  4  12  
2 3 5 

/ /  / /  
/ /  / /Ω Ω Ω Ω 

Ω Ω Ω 

FIGURE 9.43 

FIGURE 9.42 FIGURE 9.41 
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V R E  
R R 

V V 

V 
R E  

R R 
V 

V 

1 
1 

1 3 

2 
2 

2 4 

6  72  
6 3 

48 

12 72 
12 4 

54 

= 
+ 

= 
+ 

= 

= 
+ 

= 
+ 

= 

(  )(  )  

(  )(  )  

Ω 

Ω Ω 

Ω 

Ω Ω 

V E V V 

E V V V V V 
TH 

TH 

∑ = −  −  +  =  

= − = − = 

1 2 

2 1 

0 

54 48 6 
FIGURE 9.46 Substituting the Thevenin equivalent 
circuit in the network external to the resistor RL of Fig. 
9.41. 

FIGURE 9.45 
FIGURE 9.44 
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FIGURE 9.47 

Ex. 9-10 (Two sources) Find the Thevenin equivalent circuit for the network 
within the shaded area of Fig. 9.47. 

R R R R R 
k k k k 
k k k 
k k k 

TH = + 

= + 

= + 

= + = 

4 1 2 3 

14 0 8 4 6 
14 0 8 2 4 
14 0 6 2 

/ /  / /  
.  .  /  /  /  /  
.  .  /  /  .  
.  .  

Ω Ω Ω Ω 

Ω Ω Ω 

Ω Ω Ω 

FIGURE 9.48 

FIGURE 9.49

 – Boylestad 

FIGURE 9.52 Substituting the Thevenin equivalent 
circuit in the network external to the resistor RL of Fig. 
9 47  
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+ 

= 
+ 

= 
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' 

' 

' 
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. . 

. 

. 
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Ω Ω 

V I R R V 
E V 

R R R k k k 

V R E  
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k V 
k k 

V 

E V V 

TH 

T 

T 

T 

TH 

4 4 4 4 
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1 3 
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2 

3 

0 0 

08  6  0  706  
0 706 10 
0 706 4 

15 

15 
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= = = 

= 
+ 

= 
+ 

= 

= = 

( )  

/ /  .  / /  .  
( .  )(  )  

. 
. 

. 

'' 

' 

' 

' 

'' 

Ω Ω Ω 

Ω 

Ω Ω 

E E E 
V V 

V polarity of E 

TH TH TH 

TH 

= − 

= − 

= 

' '' 

' 

. . 
( ) 

4 5  15  
3 

FIGURE 9.51 

FIGURE 9.50 

Experimental Procedures 

I 
E 
R 

R E 
I 

R 
V 
I 

where E V 

SC 
TH 

TH 

TH 
TH 

SC 

TH 
OC 

SC 
TH OC 

= 

= 

= = 

FIGURE 9.53 FIGURE 9.54 

FIGURE 9.55 
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Norton’s Theorem 

Any two-terminal, linear bilateral dc network can be replaced by an 
equivalent circuit consisting of a current source and a parallel 
resistor, as shown in Fig. 9.56. 

FIGURE 9.56 Norton equivalent circuit 

ET162 Circuit Analysis – Network Theorems Boylestad 28 

1. Remove that portion of the network across which the Thevenin equivalent 
circuit is found. 

2. Make the terminals of the remaining two-terminal network. 

3. Calculate RN by first setting all sources to zero (voltage sources are replaced by 
short circuits, and current sources by open circuit) and then finding the 
resultant resistance between the two marked terminals. 

4. Calculate IN by first returning all sources to their original position and finding 
the short-circuit current between the marked terminals. 

5. Draw the Norton equivalent circuit with the portion of the circuit previously 
removed replaced between the terminals of the equivalent circuit. 

FIGURE 9.57 Substituting the Norton equivalent circuit for a complex network. 29 

V I R V 

I E 
R 

V AN 

2 2 2 

1 

0 6  0  

9 
3 

3 

= = = 

= = = 

( )  Ω 

Ω 

FIGURE 9.61 Determining RN for the network of Fig. 9.59. 

FIGURE 9.62 Substituting the Norton 
equivalent circuit for the network 
external to the resistor RL of Fig. 9.58. 

FIGURE 9.63 Converting the Norton equivalent circuit of 
Fig. 9.62 to a Thevenin’s equivalent circuit. 

Ex. 9-11 Find the Norton equivalent circuit for the network in the shaded area of 
Fig. 9.58. 

FIGURE 9.59 Identifying the terminals of particular 
interest for the network of Fig. 9.58. 

FIGURE 9.58 

FIGURE 9.60 Determining RN for the network of Fig. 9.59. 

R R RN = 

= 

= 
+ 

= 

1 2 

3 6 
3 6 
3 6 

2 

/ /  
/ /  

(  )(  )  
Ω Ω 

Ω Ω 

Ω Ω 

Ω 
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Ex. 9-12 Find the Norton equivalent circuit for the network external to the 9-Ω 
resistor in Fig. 9.64. 

RN = R1 + R2 
= 5 Ω + 4 Ω 
= 9 Ω 

FIGURE 9.64 FIGURE 9.65 

FIGURE 9.66 Boylestad 32 

I R I  
R R 

A 

N = 
+ 

= 
+ 

= 

1 

1 2 

10 
5 4 

5556 

(5 )( ) 

. 

Ω Ω 

Ω  Ω  
FIGURE 9.67 Determining IN for the network of Fig. 9.65. 

FIGURE 9.68 Substituting the Norton 
equivalent circuit for the network 
external to the resistor RL of Fig. 9.64. 
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Ex. 9-13 (Two sources) Find the Norton equivalent circuit for the portion of the 
network external to the left of a-b in Fig. 9.69. 

R R RN = 

= 

= 
+ 

= 

1 2 

4 6 
4 6 
4 6 

2 4  

/ /  
/ /  

(  )(  )  

. 

Ω  Ω  

Ω  Ω  

Ω  Ω  

Ω 

FIGURE 9.69 
FIGURE 9.70 
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I E 
R 

V A 

I I A 
I I I 

A A A 
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N N N 

' 

'' 

'' ' 

. 

. . 

= = = 

= =  

= − 

= − = 

1 

1 

7 
4 

175 

8 

8  175  6  25  

Ω 

FIGURE 9.74 Substituting the Norton equivalent circuit 
for the network to the left of terminals a-b in Fig. 9.69. 

FIGURE 9.72 FIGURE 9.73 
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 Maximum Power Transfer Theorem 

A load will receive maximum power from a linear bilateral dc network 
when its total resistive value is exactly equal to the Thevenin resistance of 
the network as “seen” by the load. 

Homework 9: 2, 4, 6, 13, 14 

HW 9-6 Using superposition, find the voltage V2 for the network in Fig. 9.124. 

Figure 9.124 Problem 6. 

V 
kk 
VkV 

02.13
128.6

)36(8.6' 
1 

= 
Ω+Ω 

Ω 
= 

mA 
kk 

mAkI 

75.5
8.612 

)9(12 
2 

= 
Ω+Ω 

Ω 
= 

VVVVVV 

VkmARIV 

12.5210.3902.13

10.39)8.6)(75.5(
'' 

2 
' 

12 

22 
'' 

2 

=+=+= 

=Ω== 
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RL = RTH RL = RN 
FIGURE 9.74 Defining the conditions for maximum 
power to a load using the Thevenin equivalent 
circuit. 

FIGURE 9.75 Defining the conditions for maximum 
power to a load using the Norton equivalent circuit. 
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Introduction to Capacitors 

Thus far, the only passive device appearing in the class has been the 
resistor. We will now consider two additional passive devices called the 
capacitor and the inductor, which are quite different from the resistor 
in purpose, operation, and construction. 

Unlike the resistor, both elements display their total characteristics only 
when a change in voltage or current is made in the circuit in which they 
exist. In addition, if we consider the ideal situation, they do not 
dissipate energy as does the resistor but store it in a form that can be 
returned to the circuit whenever required by the circuit design. 

ET162 Circuit Analysis – Capacitors Boylestad 3 

1 

4 

The Electric Field 

D 
A 

flux unit area= 
ψ ( / ) 

The electric field is represented by electric flux lines, which are drawn to 
indicate the strength of the electric field at any point around any charged 
body; that is, the denser the lines of flux, the stronger the electric field. In 
Fig. 10.1, the electric field strength is stronger at point a than at position b 
because the flux lines are denser at a than b. 

The flux per unit area (flux 
density) is represented by the 
capital letter D and is 
determined by 

FIGURE 10.1 Flux distribution from an isolated positive charge. 
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Electric flux lines always extend from a 
positively charged body to a negatively 
charged body, always extend or terminate 
perpendicular to the charged surfaces, 
and never intersect.)/( 

)/,/( 

),( 

2 CN 
r 
kQE 

CNcoulombnetworks
Q 
FE 

CcoulomsQ 

= 

= 

≡Ψ 

The ElThe Electricectric FieldField 
The electric field is represented by electric flux lines, which are drawn to 
indicate the strength of the electric field at any point around the charged body. 
The electric field strength at any point distance r from a point charge of Q 
coulombs is directly proportional to the magnitude of the charge and inversely 
proportional to the distance squared from the charge. 

FIGURE 10.2 
Electric flux 
distribution: (a) 
opposite charges; (b) 
like charges. 

FIGURE 10.3 Electric flux distribution between the 
plates of a capacitor: (a) including fringing; (b) ideal. 

V 
QC = 

CapacitanceCapacitance 
A capacitor is constructed simply of two parallel conducting plates 
separated by insulating material (in this case, air). Capacitance is a measure 
of a capacitor’s ability to store charge on its plates. 

A capacitor has a capacitance of 1 farad if 1 coulomb of charge is deposited 
on the plates by a potential difference of 1 volt cross the plates. 

C = farad (F) 
Q = coulombs (C) 
V = volts (V) 

ET162 Circuit Analysis – Capacitors Boylestad 6 

FIGURE 10.4 Effect of a dielectric on the field distribution between the plates of a capacitor: (a) 
alignment of dipoles in the dielectric; (b) electric field components between the plates of a capacitor 
with a dielectric present.. 

ε 

ε ε ε  

ε 

ε ε  ε  

= 

= 

= 

= = × − 

D 
E 

farads meter F M 

C d  
A 

C A 
d 

A 
d 

F 

r 

r r 

( / , / ) 

. ( ) 

0 

0 
12885  10  

E : Electric field (V/m) 
D : Flux density 
ε : Permittivity (F/m) 
C : Capacitance (F) 
Q : Charge (C) 
A : Area in square meters 
d : Distance in meters between the plates 

Ex. 10-1 Determine the capacitance of each capacitor on the right side of Fig.10.5. 

FIGURE 10.5 
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Ex. 10-2 For the capacitor of Fig. 10.6: 
a. Determine the capacitance. 
b. Determine the electric field strength between the plates if 450 V are applied  
across the plates. 
c. Find the resulting charge on each plate. 

(  )(  )  F 
m 

mmF 
d 
AC o 

o 
12 

3 

212 

100.59
105.1

01.0/1085.8 − 

− 

− 

×= 
× 

× 
== 

ε 

mV 
m 

V 
d 
V /10300 

105.1
450 3 

3 
×≅ 

× 
== 

−
ε 

( )( ) 
nCC 

VCVQ 
V 
QC 

55.2610550.26
450100.59

9 

12 

=×= 

×== 

= 

− 

− 

a. 

b. 

c. 

FIGURE 10.6 
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FIGURE 10 7 Summary of capacitive elements 

11 

Transients in Capacitive Networks: Charging Phase 

FIG. 10.8 Basic charging network. FIG. 10.9 ic during charging phase. FIG 10.10 Vc during 
charging phase. 

FIG. 10.11 Open-circuit equivalent for a 
capacitor following the charging phase. 

FIG. 10.12 Short-circuit equivalent for a 
capacitor (switch closed, t=0). ET162 Circuit Analysis – Capacitors 

A capacitor can be replaced by an open-circuit equivalent once the charging 
phase in a dc network has passed. 

i E 
R 

eC 
t RC  = − / 

t RC  ond  s  = (sec , ) 

Figure 10.13 The e-x function (x ≥ 0). 

Figure 10.14 ic versus t during the charging phase. 

3 



  

 

   
   

   
 

 

  

   
  

  
 

  
  

 

Capacitors Boylestad

v E eC 
t RC  = − −( )/1 

v  Ee  R 
t RC  = − / 

Figure 10.15 vc versus t during the charging phase. Figure 10.16 Effect of C on the charging phase. 

Figure 10.17 vR versus t during the charging phase. 
ET162 Circuit Analysis – Capacitors Boylestad 13 

Transients in Capacitive 
Networks: Discharging Phase v  Ee  disch  ing  

i E 
R 

e  disch  ing  

v Ee disch ing 

C 
t RC  

C 
t RC  

C 
t RC  

= 

= −  

= −  

− 

− 

− 

/ 

/ 

/ 

:  arg  

arg 

arg 

Figure 10.20 Demonstrating the discharge behavior of 
a capacitive network. 

Figure 10.21 The charging and discharging cycles for 
the network of fig. 10.19. 
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Ex. 10-3 a. Find the mathematical expressions for the transient behavior of vC, iC, and vR 
for the circuit of Fig. 10.18 when the switch is moved to position 1. Plot the curves of vC, 
iC, and vR. 
b. How much time must pass before it can be assumed, for all practical purposes, that iC ≈ 
0 A and vC ≈ E volt? 
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FIGURE 10.18 

FIGURE 10.19 
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Ex. 10-4 After vC in Example 10.3 has reached its final value of 40 V, the switch is 
shown into position 2, as shown in Fig. 10.21. Find the mathematical expressions for the 
transient behavior of vC, iC, and vR after the closing of the switch. Plot the curves for vC, 
iC, and vR using the defined directions and polarities of Fig. 10.18. Assume that t = 0 
when the switch is moved to position 2. 

FIGURE 10.23 

FIGURE 10.21 
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Capacitors in Series and Parallel 

Q Q Q Q 

C C C C 

C C C  
C C 

T 

T 

T 

= = = 

= = = 

= 
+ 

1 2 3 

1 2 3 

1 2  

1 2 

1 1 1 1 

Figure 10.24 Series capacitors. 

Q Q Q Q 
C C C C 

T 

T 

= + + 

= + + 
1 2 3 

1 2 3 

Figure 10.25 Parallel capacitors. ET162 Circuit Analysis – Capacitors Boylestad 18 

Ex. 10-5 For the circuit of Fig. 10.26: 
a. Find the total capacitance. 
b. Determine the charge on each plate. 
c. Find the voltage across each capacitor. 

a 
C C C C 
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Figure 10.26 

Ex. 10-6 For the circuit of Fig. 10.27: 
a. Find the total capacitance. 
b. Determine the charge on each plate. 
c. Find the total charges. 

a C  C  C  C  
F F F 
F 

b Q  C  E  F  V  mC  
Q  C  E  F  V  mC  
Q  C  E  F  V  mC  

c Q  Q  Q  Q  mC  

T 

T 

. 

.  (800  )(  )  .  
(  )(  )  .  
(  )(  )  .  

. . 
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3 1 
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1 2 3 

800 60 1200 
2060 

10 48 38 4 
60 10 48 2 88 
1200 10 48 57 6 

98 88 

µ µ µ 

µ 
Figure 10.27 
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Ex. 10-7 Find the voltage across and charge on each capacitor for the network of 
Fig. 10.28. 
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Figure 10.28 

Figure 10.29 
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Ex. 10-9 Find the voltage across and charge on each capacitor for the network of 
Fig. 10.32. after each has charged up to its final value. 

oylestad 21 

Ex. 10-8 Find the voltage across and charge on capacitors C1 of Fig. 10.30 after it 
has charged up to its final value. 

V 
V 

V 

Q  C  V  
F V 

C 

C 

C 

= 
+ 

= 

= 

= × 

= 

− 

(8 )( ) 

(  )(  )  
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Ω Ω 

24 
4 8 

16 

20 10 16 
320 

1 1 
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µ 

Figure 10.30 

Figure 10.31 

Figure 10.32 
(7 Ω)(  72  V )V = = 76V 

2C 7 Ω + 2Ω 

(2 Ω)(  72  V )
V = = 16V 

1C 7Ω + 2 Ω 

Q = C V  = (2 10  − 6 F 16  V ) = 32  µ× )(  C1 1 C1 

Q = C V  = (3 × 10−6 F V1 2 C2 
)(56 ) = 168 µC 
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HW 10-54 Find the voltage across and the charge on each capacitor for the circuit in Fig. 
10.115. 

Figure 10.115 Problem 54. 

Homework 10: 3, 4, 14, 51,52, 54, 57 

HW 10-22 Repeat Problem 21 for R = 1 MΩ, and compare the results. 

Figure 10.87 Problem 22. 

Homework 10: 22, 24, 27, 28 
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Introduction to Inductors 
Three basic components appear in the majority of electrical/electronic 
systems in use today. They include the resistor and the capacitor, 
which have already been introduced, and the inductor, to be 
examined in detail in this module. Like the capacitor, the inductor 
exhibits its true characteristics only when a charge in voltage or 
current is made in the network. 
Recall from previous module that a capacitor can be replaced by an 
open-circuit equivalent under steady-state conditions. You will see in 
this module that an inductor can be replaced by a short-circuit 
equivalent under steady-state conditions. Finally, you will learn that 
while resistors dissipate the power delivered to them in form of heat, 
ideal capacitors store the energy delivered to them in the form of an 
electric field. Inductors are like capacitors in that they also store the 
energy delivered to them–but in the form of a magnetic field.

ET162 Circuit Analysis – Magnetism and Inductors Boylestad 3 
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Magnetic Field 
Magnetism plays an integral part in almost every electrical device used today in 
industry, research, or the home. The compass relies on a permanent magnet for 
indicating direction. Michael Faraday, Karl Friedrich Gauss, and James Clerk 
Maxwell continued to experiment in this area and developed many of basic concepts 
of electromagnetism–magnetic effects induced by the flow of charge, or current. 

A magnetic field exists in the region 
surrounding a permanent magnet, which can 
be represented by magnetic flux lines similar 
to electric flux lines. Magnetic flux lines, 
however, do not have origins or terminating 
points as do electric flux lines but exist in 
continuous loops, as shown in Fig. 11.1. Figure 11.1 Flux distribution for a permanent magnet. 

Figure 11.2 Flux distribution for two adjacent, opposite poles. Figure 11.3 Flux distribution for two adjacent, like poles. 

In the SI system of units, magnetic 
flux is measured in webers (WB). 
The applied symbol is Φ. The 
number of flux lines per unit area, 
called the flux density, is denoted by 
B and is measured in teslas (T). 

Figure 11.6 Magnetic flux lines around a 
current-carrying conductor. 

Figure 11.7 Flux distribution of 
a single-turn coil. 

Figure 11.8 Flux distribution of a 
current carrying coil. 

Figure 11.9 Electromagnet. Figure 11.10 Determining the direction of flux for an electromagnet: (a) method; (b) notation. 

A
B Φ 
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)( 
)(/ 

mA 
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TteslasmWbB 
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=Φ 

== 

2Wb/m1T1tesla1 == 
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InductanceInductance 
Sending a current through a coil of wire establishes a magnetic 
field through and surrounding the unit. This component is called 
an inductor. Its inductance level determines the strength of the 
magnetic field around the coil due to an applied current. 

inductors are designed to set up a strong magnetic field linking 
the unit, whereas capacitors are designed to set up a strong 
electric field between the plates. 

Figure 11.15 Some areas of application of magnetic effects. 

Figure 11.16 Defining the 
parameters for Eq. (11.6). 

μ : Permeability (Wb/A∙m) 
N : Number of turns (t) 
A : m2 (11.6) 
l : m 
L : henries (H) 

InductanceInductance –– Inductor ConstructionInductor Construction 

l 
ANL 

2µ
= 

),(104 
2 

7 
2 

Hhenries
l 

ANLorwhere
l 

AN
L r 

or 
or µ

πµµµ
µµ −×=== 

The level of inductance has similar construction sensitivities in that is dependent on 
the area within the coil, the length of the unit, and the permeability of the core 
material. It is also sensitive to the number of turns of wire in the coil as depicted by 
Eq. (11.6) and defined in Fig. 11.16 for two of the most popular shapes: 

or 
o 

r L
l 

AN
L µ

µ
µ =⎟⎟ 

⎠ 

⎞ 
⎜⎜ 
⎝ 

⎛ 
= 

2 The inductance of an inductor with a 
ferromagnetic core is μr times the inductance 
obtained with an air core. 
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Ex. 11-1 For the air-core coil in Fig. 11.18: 
a. Find the inductance. 
b. Find the inductance if a metallic core with μr = 2000 is inserted in the coil. 

mH31.36µH)68(2000)(15.LµLb. 

µH15.68 
mm25.4 

)m(31.7µ(1)(100t)104π
l 

ANµ
104πL 

mm25.4
in.39.37 

m1in.1l 

mµ31.7
4 

π(6.35mm) 
4 
dπA 

mm6.35 
in.39.37 

m1in. 
4 
1da. 

0r 

22 
7 

2 
r7 

2 
22 

=== 

=×=×= 

=⎟⎟ 
⎠ 

⎞ 
⎜⎜ 
⎝ 

⎛ 
= 

=== 

=⎟⎟ 
⎠ 

⎞ 
⎜⎜ 
⎝ 

⎛ 
= 

−− 

Figure 11.18 Air-core coil for example 11.1. 
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Ex. 11-2 In Fig. 11.19, if each inductor in the left column is changed to the type 
appearing in the right column, find the new inductance level. For each change, assume 
that the other factors remain the same. 

a. The only change was the number of 
turns, but it is a squared factor, 
resulting in L 
= (2)2Lo = (4)(20 μH) = 80 μH 

b. In this case, the area is three times the 
original size, and the number of turns is 
½. Since the area is in the numerator, it 
increases the inductance by a factor of 
three. The drop in the number of turns 
reduces the inductance by a factor of 
(½)2 = ¼. Therefore, L 
= (3) (1/4)L = (3/4)(16 μH) = 12 μH Figure 11.19 Inductors for example 11.2.o 

c. Both μ and the number of turns have increased, although the increase in the number 
of turns is squared. The increased length reduce the inductance. Therefore, 

(3)2 (1200) 3L = L = (4.32×10 )(10µH) = 43.2mH 
2.5 o 

3 

InductanceInductance –– Types of InductorsTypes of Inductors 
Inductors, like capacitors and resistors, can be categorized under 
the general headings fixed or variable. The symbol for a fixed 
air-core inductor is provided in Fig. 11.20(a), for an inductor with 
a ferromagnetic core in Fig. 11.20(b), for a tapped coil in Fig. 
11.20(c), and for a variable inductor in Fig. 11.20(d). 

Figure 11.20 Inductor 
coil symbols. 

Practical Equivalent InductorPractical Equivalent Inductor 
Inductors, like capacitors, are not ideal. Associated with every 
inductor is a resistance determined by the resistance of the turns of 
wire and by core losses. Both elements are included in the 
equivalent circuit in Fig. 11.24. For most applications in this text, 
the capacitance can be ignored, resulting in the equivalent model 
in Fig. 11.25. 

Figure 11.25 Practical equivalent model for an inductor. 

Figure 11.24 Complete equivalent model for an inductor. 

Induced Voltage vL 

Faraday’s law of electromagnetic induction is one of the most important in this field 
because it enables us to establish ac and dc voltages with generator. If we move a 
conductor through a magnetic field so that it cuts magnetic lines of flux as shown in 
Fig. 11.28. If we go a step further and move a coil of N turns through the magnetic field 
as shown in Fig. 11.29, a voltage will be induced across the coil as determined by 
Faraday’s law: 

),( Vvolts
dt 
dNe φ 

= 

Figure 11.29 Demonstrating Faraday’s law.Figure 11.28 Generating an induced voltage by 
moving a conductor through a magnetic field. 
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form of magnetic field linking the coil. 

open circuit at the instant the switch is closed. 
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),( Hhenries
di
dNL

L

φ

be 
across c
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RR--LL TransientsTransients –– The StoragThe Storage Phasee Phase
The polarity of the induced voltage across the coil is such that it opposes the increasing 
level of current in the coil as shown in Fig. 11.30. In other words, the changing current 
through the coil induces a voltage across the coil that is opposing the applied voltage 
that establishes the increase in current to the first place. The quicker the change in 
current through the coil, the greater the opposing induced voltage to squelch the 
attempt of the current to increase in magnitude. This effect is a result of an important 
law referred to as Lenz’s law, which states that 

an induced effect is always such as 
to oppose the cause that produced it. 

),( Hhenries 
di 
dNL 

L 

φ 
= 

= 

If the inductance level is very small, there will be almost 
no change in flux linking the coil, and the induced 
voltage across the coil will be very small. That is 

In network analysis, the voltage induced across an inductor will always have a polarity 
that opposes the applied voltage. Therefore, the following notation is used for the 
induced voltage across an inductor: 

the larger the inductance and/or the more rapid 
the change in current through a coil, the larger will 
the induced voltage the oil 

),( Vvolts 
dt 
di

LV L 
L = 

),( Vvolts 
dt 
di

Leand 
dt 
di 

di 
dN 

dt 
dNe L 

L 
L 

L 

=⎟ 
⎠ 
⎞

⎜ 
⎝ 
⎛ 
⎟⎟ 
⎠ 

⎞ 
⎜⎜ 
⎝ 

⎛ 
== 

φφ 

Figure 11.30 Demonstrating the effect of Lenz’s law. 

A great number of similarities exist between the analyses 
of inductive and capacitive networks. The storage 
waveforms have the same shape, and time constants are 
defined for each configuration. The circuit in Fig. 11.31 is 
used to describe the charging phase of capacitors, with a 

Figure 11.31 Basic 
R-L transient network. 

simple replacement of the capacitor by an ideal inductor. It 
is important to remember that the energy is stored in the 
form of an electric field between the plates of a capacitor. 
For inductors, on the other hand, energy is stored in the 

At the instant the switch is closed, the choking action of 
the coil prevents an instantaneous change in current 
through the coil, resulting in iL = 0 A as shown in Fig. 
11.32(a). The absence of a current through the across the 
resistor as determined by vR = iRR = iLR = (0 A)R = 0 V, as 
shown in Fig. 11.32(c). Applying KVL around the closed 
loop results in E volts across the coil at the instant the 
switch is closed, as shown in Fig. 11.32(b). 
Figure 11.32 iL, vL, and vR for the circuit in Fig. 11.31 following the closing of the switch. 

The equation for the transient response of the current through an inductor if the 
following: 

with the time constant now defined by 

If we keep R constant and increases as shown in Fig. 11.33 for increasing levels of L. 
The change in transient response is expected because the higher the inductance level, 
the greater the choking action on the changing current level, and longer it will take to 
reach-steady state conditions. 

The equation for the voltage across the coil is the 
following: 

and for the voltage across resistor: 

Since the waveforms are similar to those obtained for capacitive networks, we will 
assume that 

the storage phase passed and steady-state conditions have been established once a 
period of time equal to five time constants has occurred. 

( ) ),(1 / Aamperese
R 
Ei t 

L 
τ−−= 

( ) ),(1 / VvoltseEv t 
R 

τ−−= 

),(/ VvoltsEev t 
L 

τ−= 

),(sec sonds
R 
L 

=τ

Figure 11.33 Effect of L on the shape of the iL storage waveform. 
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In addition, since τ = L/R will always have some numerical value, even though it may 
be very small at times, the transient period of 5τ will always have some numerical 
value. Therefore, 
the current cannot change instantaneously in an inductive network. 
If we examine the conditions that exist at the 
instant the switch is closed, we find that the 
voltage across the coil is E volts, although the 
current is zero amperes as shown in Fig. 11.34. In 
essence, therefore, 

the inductor takes on the characteristics of an 

However, if we consider the conditions that exist 
when steady-state conditions have been 
established, we find that the voltage across the 
coil is zero volts and the current is a maximum 
value of E/R ampere as shown in Fig. 11.35. In 
essence, therefore, 

the inductor takes on the characteristics of a 
short circuit when steady-state conditions have 
been established. 

Figure 11.34 Circuit in Figure 11.31 
the instant the switch is closed. 

ET162 Circuit Analysis – Magnetism and Inductors Figure 11.35 Circuit in Figure 11.31 under steady-state conditions. 

4 



 

 

 

 

  
 

ET162 Circuit Analysis – Capacitors B

cuit Analysis – Capacitors Boylestad 19

Ex. 11-3 Find the mathematical expressions for the transient behavior of iL and vL for 
the circuit in Fig. 11.36 if the switch is closed at t = 0 s. Sketch the resulting curves. 

)emA(125i 
:Eq.(11.13)intongSubstituti

mA25A1025
kΩ2 
V50

R 
EI 

iscurrentstatesteadyormaximumtheThen 
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Figure 11.36 R-L circuit for Example 11.3. 

Figure 11.37 iL and vL for the network in Fig. 11.36. 
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Initial ConditionsInitial Conditions 
Since the current through a coil cannot change instantaneously, the current through 
a coil begins the transient phase at the initial value established by the network (note 
Fig. 11.38) before the switch was closed. It then passes through the transient phase 
until it reaches the steady-state level after about five time constants. The steady-
state level of the inductor current can be found by substituting its short-circuit 
equivalent and finding the resulting current through the element. 

Using the transient equation developed in the 
previous discussion, an equation for the current iL 
can be written for the entire time interval in Fig. 
11.38; that is 

with (If – Ii) representing the total change during 
the transient phase. However, by multiplying 
through and rearranging terms: 

we find 
ττ 

ττ 

// 

// 

t 
i 

t 
ff 

t 
ii 

t 
ffiL 

eIeII 

eIIeIIIi 
−− 

−− 

+−= 

+−−+= 

τ/)( t 
fifL eIIIi −−+= 

)1)(( /τt 
ifiL eIIIi −−−+= 

Figure 11.38 Defining the three phases of a 
transient waveform. 

RR--LL TransientsTransients –– The Release PhaseThe Release Phase 
In the analysis of R-C circuits, we found that the capacitor could hold its charge and 
store energy in the form of an electric field for a period of time determined by the 
leakage factors. In R-L circuits, the energy is stored in the form of a magnetic field 
established by the current through the coil. Unlike the capacitor, however, an isolated 
inductor cannot continue to store energy, because the absence of a closed path causes 
the current to drop to zero, releasing the energy stored in the form of a magnetic field. 

If the series R-L circuit in Fig. 11.41 reaches 
steady-state conditions and the switch is quickly 
opened, a spark will occur across the contacts 
due to the rapid change in current di/dt of the 
equation vL = L(di/dt) establishes a high voltage 
vL across the coil that, in conjunction with the 
applied voltage E, appears across the points of 
the switch. This is the same mechanism used in 
the ignition system of a car to ignite the fuel in 
the cylinder. Figure 11.41 Demonstrating the effect of opening a switch 

in series with an inductor with a steady-state current. 
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Thevenin Equivalent – τ = L/TTh 

Ex. 11-6 For the network in Fig. 11.46: 
a. Find the mathematical expression for the transient behavior of the current iL and the 
voltage vL after the closing of the switch (Ii = 0 mA). 
b. Draw the resultant waveform for each. 

Figure 11.46 Example 11.6. 
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Figure 11.47 Demonstrating RTh for the network in Fig. 11.46. 
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Applying the voltage divider rule (Fig. 11.48), we obtain 
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Figure 11.49  The resulting Thevenin equivalent 
circuit for the network in Fig. 11.46. 

Figure 11.48  Determining Eth for the network in Fig. 11.46. 
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Figure 11.50  The resulting waveforms for iL and vL for the network in Fig. 11.46. 

b. See Fig. 11.50. 

HW 11-22 For Fig. 11.94: 
a. Determine the mathematical expressions for iL and vL following the closing of the 
switch. 
b. Determine iL and vL after one time constant. 

Homework 11: 2, 4, 8, 10, 12, 14, 22 

Figure 11.94 Problem 22. 
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Introduction to Magnetic Field 

The magnetic field distribution around a 
permanent magnet or electromagnet was 
covered in previous module. The flux density 
is defined by Eq. 12.1. 

The “pressure” on the system to establish 
magnetic lines of force is determined by the 
applied magnetomotive force which is directly 
related to the number of turns and current of 
the magnetizing coil as appearing in Eq. 12.2. 

The level of magnetic flux established 
in a ferromagnetic core is a direction 
function of the permeability of the 
material. Ferromagnetic materials 
have a very high level of permeability 
while non-magnetic material such as 
air and wood have very low levels. 
The radio of the permeability of the 
material to that of air is called the 
relative permeability and is defined 
by Eq. 12.3. 

B = Wb/m2 = teslas (F)  
Φ = webers (Wb) 
A = m2 

)( 
)( 

)( 

AampereI 
tturnsN 

AtturnsampereF 

= 

= 

−= 

A
B Φ 
= 

INF = 
mAWbo 

o 
r ⋅×== − /104 7πµ 

µ 
µµ 
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Reluctance 
The resistance of a material to the flow of charge is determined for electric circuits 
by the equation 

),( Ω= ohmsR 
A 
lρ 

The reluctance of a material to the setting up of magnetic flux lines in the material 
is determined by the following equation: 

l
ℜ= (rels, or At/Wb)

µA 
Where R is the reluctance, l is the length of the magnetic path, and A is the cross-
sectioned area. The t in the units At/Wb is the number of turns of the applied 
winding. Note that the resistance and reluctance are inversely proportional to the 
area, indicating that an increase in area results in a reduction in each and an increase 
in the desired result: current and flux. For an increase in length, the opposite is true, 
and the desired effect is reduced. The reluctance, however, is inversely proportional 
to the permeability, while the resistance is directly proportional to the resistivity. 

ET162 Circuit Analysis – Magnetic Circuits Boylestad 4 
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7 Boylestad 2

In the SI system of units, magnetic 
flux is measured in webers (WB). 
The applied symbol is Φ. The 
number of flux lines per unit area, 
called the flux density, is denoted by 
B and is measured in teslas (T). 

Figure 11.6 Magnetic flux lines around a 
current-carrying conductor. 

Figure 11.7 Flux distribution of 
a single-turn coil. 

Figure 11.8 Flux distribution of a 
current carrying coil. 

Figure 11.9 Electromagnet. Figure 11.10 Determining the direction of flux for an electromagnet: (a) method; (b) notation. 
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OhmOhm’’s Law for the Magnetic Circuitss Law for the Magnetic Circuits 

For the magnetic circuits, the effect desired is the flux Φ. The cause is the 
magnetomotive force (mmf) F, which is the external force (or “pressure”) 
required to set up the magnetic flux lines within the magnetic material. The 
opposition to the setting of the flux Φ is the reluctance R. 

Substituting, we have 

Figure 12.1 Defining the components of a magnetomotive force. 

ℜ 
=Φ 

F 

Since F = NI, above equation clearly reveals that an 
increase in the number of turns or the current through 
the wire in Fig. 12.1 results in an increased “pressure” 
on the system to establish the flux lines through the 
core. 
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Substituting for the magnetomotive force results in 

Magnetizing Force 
)/( mAt 

l 
FH = 

)/( mAt
l 

NIH = 

The magnetomotive force per unit length is called 
the magnetizing force (H). In equation form, 

For the magnetic circuit in Fig. 12.2, if NI = 
40 At and l = 0.2 m, then 

Note in Fig. 12.2 that the direction of the flux 
Φ can be determined by placing the fingers of 
your right hand in the direction of the thumb. 
It is interesting to realize that the magnetizing 
force is independent of the type of core 
material–it is determined solely by the number 
of turns, the current, and the length of the core. 

HB 
equations 

followingthebyrelatedareforce 
gmagnetizintheanddensityfluxThe 

µ= 

: 

mAt 
m 
At 

l 
NIH /200 

2.0
40 

=== 

Figure 12.2 Defining the magnetizing 
force of a magnetic circuit. 
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Hysteresis 
A curve of the flux density B versus the magnetizing force H of a material is of 
particular important to the engineer. A typical B-H curve force a ferromagnetic 
material such as can be derived using the setup in Fig. 12.4. 

The core is initially unmagnetized, and the current 
I = 0. If the current I is increased to some value 
above zero, the magnetizing force H increases to a 
value determined by 

l 
NIH ↑

↑= 

The flux Φ and the flux density B (B = Φ/A) also 
increase with the current I (or H). If the material has 
no residual magnetism, and the magnetizing force H 
is increased from zero to some value Ha, the B-H 
curve follows the path shown in Fig. 12.5 between 0 
to a. If the magnetizing force H is increased until 
saturation (Hs) occurs, the curve continues as shown 
in the figure to point b. When saturation occurs, the 
flux density has, for all practical purposes, reached 
its maximum value. 

Figure 12.4 Series magnetic circuit used to 
define the hysteresis curve. 

Figure 12.5 Hysteresis curve. 
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Ampere’s Circuital Law 

If the entire cycle is repeated, the curve 
obtained for the same core will be 
determined by the maximum H applied. 
Three hysteresis loops for the same 
material for maximum values of H less 
than the saturation value are shown in 
Fig. 12.6. In addition, the saturation 
curve is repeated for comparison 
purposes. 

If the magnetizing force is reduced to zero by letting I decrease to zero, the curve 
follows the path of the curve follows the path of the curve between b and c. The flux 
density BR, which remains when the magnetizing force is zero, is called the residual 
flux density. It is this residual flux density that makes it possible to create permanent 
magnets. If the current I is reserved, developing a magnetizing force, –H, the flux 
density when –Hd is reached. The magnetizing force –Hd required to “coerce” the flux 
density to reduce its level to zero is called the coercive force. As the force –H is 
increased until saturation again occurs and is then reserved and brought back to zero, 
the path def results. If the magnetizing force is increased in the positive direction 
(+H), the curve traces the path shown from f to b. the entire curve represented by 
bcdefb is called the hysteresis curve. 

Figure 12.4  Defining the normal magnetization curve. 
ET162 Circuit Analysis – Magnetic Circuits Boylestad 9 

If we apply the “cause” analogy to KCL (∑ V 
= 0), we obtain the following: Electric Magnetic 

Circuit Circuits
∑ F = 0 (for magnetic Circuits) 

Cause FE 
which, in words, states that the algebraic sum of 

Effect I Φthe rises and drops of the mmf around a closed 
loop of a magnetic circuits is equal to zero. ROpposition R 

The similarity between the analyses of electric and magnetic circuits has been 
demonstrated to some extent for the quantities in Table 12.1. 

Table 12.1 

Above equation is referred as Ampere’s
circuital law. When it is applied to magnetic 
circuits, sources of mmf are expressed by the 
equation 

F = NI (At) 

The equation for the mmf drop across a 
portion of a magnetic circuit can be found by
applying the relationships listed in Table 
12.1; that is, for electric circuits, 

V = IR 

Resulting in the following for magnetic circuits 
F = ΦR (At) 

Where Φ is the flux passing through a section of
the magnetic circuit and R is the reluctance of that
section. A more practical equation for the mmf
drop is, 

F = H l (At) 

where H is the magnetizing force on a section of a 
magnetic circuit and l is the length of the section. 

Flux Φ 
If we continue to apply the relationships described in the previous module to KCL, we 
find that the sum of the fluxes entering a junction is equal to the sum of the fluxes 
leaving a junction; that is, for the circuit in Fig. 12.11, 

both of which are equivalent. 
Figure 12.11  Flux distribution of a series-parallel magnetic network. 

)( 
)( 

bjunctionator 
ajunctionat 

acb 

cba 

Φ=Φ+Φ 

Φ+Φ=Φ 

Series Magnetic Circuits – Determining NI 
In one type, Φ is given, and the impressed mmf NI must be computed. This is the type 
of problem encountered in the design of motors, generators, and transformers. In the 
other type, NI is given, and the flux Φ of the magnetic circuit must be found. This 
type of problem is encountered primarily in the design of magnetic amplifiers. This 
section considers only series magnetic circuits in which the flux Φ is the same 
throughout. 
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Ex. 12-1 For the series magnetic circuit in Fig. 12.12: 
a.  Find the value of I required to develop a magnetic flux of Φ = 4×10-4 Wb. 
b.  Determine µ and µr for the material under these conditions. 

The magnetic circuit can be represented by the system shown in Fig. 12.13(a). The 
electric circuit analogy is shown in Fig. 12.13(b). Analogies of this type can be very 
helpful in the solution of magnetic circuits. Table 12.2 is for part (a) of this problem. 

a. The flux density B is 

φ 4 ×10−4 Wb −1B = = = 2 ×10 T = 0.2 T−3 2A 2 ×10 m 

Using the B-H curves in Fig. 12.8, we can determine the magnetizing force H: 

H (cast steel) = 170 At/m 

Applying Ampere’s circuital law yields 

NI = Hl 
H l (170At / m)(0.16m)

and I = = = 68mA 
N 400t 

Figure 12.12  Example 12.1. 
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Figure 12.13  
(a) magnetic circuit equivalent and 
(b) electric circuit analogy. 
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Hl(At)l(m) H(At/m) B(T)A(m2)Φ (Wb) Section 
Table 12.1 
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Air Gaps 
Let’s consider the effects that an air gap has on a magnetic circuit. 
Note the presence of air gaps in the magnetic circuits of the motor and 
meter in Fig. 11.15. The spreading of the flux lines outside the 
common area of the core for the air gap in Fig. 12.18(a) is known as 
fringing. For our purposes, we shall ignore this effect and assume the 
flux distribution to be as in Fig. 12.18(b). 

The flux density of the air gap in Fig. 12.18(b) is given by 

where, for our purposes, 

and 
coreg 

coreg 

AA = 

Φ=Φ 

g 

g 
g A

B 
Φ 

= 

For the most practical applications, the 
permeability of air is taken to be equal to that 
of free space. The magnetizing force of the air 
gap is then determined by 

o 

g 
g 

B
H 

µ 
= 

and the mmf drop across the air gap is equal to 
HgLg. An equation for Hg is as follows: 
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== −πµ 

Figure 12.18  Air gap: (a) with fringing; (b) ideal. 
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 – 

An equivalent magnetic circuit and its electric 
circuit analogy are shown in Fig. 12.20. 

The flux density for each section is 

From the B-H curves in Fig. 12.28, 

Ex. 12-4 Find the value of I required to establish a magnetic flux of Φ = 0.75 × 10-4 

Wb in the series magnetic circuit in Fig. 12.19. 

Figure 12.19  Relay for Example 12.4. mAtsteelcastH /280)( ≅ 
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Applying Equation, 

The mmf drops are 

Applying Ampere’s circuital law, 
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Figure 12.20   (a) Magnetic circuit equivalent and (b) electric circuit analogy for the relay in Fig. 12.19. 

HW 12-6 Repeat Problem 5 for Φ = 72,000 maxwells and an impressed mmf of 120 
gilberts. 

ℑ 120 gilberts −3ℜ = = = 1.67 ×10 (rels CGS)
Φ 72,000 max wells 

Homework 12: 2, 4, 6, 12-14. 
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